【題目】如圖,在平面直角坐標(biāo)系中,軸于點.點從點出發(fā),以每秒個單位長度的速度沿軸向點運動;點從點同時出發(fā),以相同的速度沿軸的正方向運動,運動時間.過點作平行于軸的直線,連接,過點作 交直線于點,、與軸分別交于點、,連接.
(1)當(dāng)時,試求的值;
(2)當(dāng)為中點時,試求的值;
(3)是否存在這樣的,使得與的面積相等?若存在,求出所有符合條件的;若不存在,請說明理由.
【答案】(1);(2);(3)當(dāng)時,與的面積相等
【解析】
(1))由題意知AP=OQ=t,先證明,得到DQ=AP,即∠DOQ=45,進而∠PDO=30,即可解答;
(2)過作于,由已知求出PO=OQ=DQ=2,進而得OD、PD長,再由等面積法求得OG,利用即可求解;
(3)過作,交于,交軸于,由AB∥y軸得 ,則有,進而求得EM、OE長,由,得,即可得到OE=OP,代入得到關(guān)于t的方程,解之即可.(也可分別求出OE、OF、EF,由OE=OF+EF列方程求解)
解:(1)軸,
,
,
,
,
,
軸 ,
,
,
,
,
;
(2)過作于.
為的中點,
在中, ,
在中, ,
,
,
(亦可通過求得)
∴在中, ;
(3)過作,交于,交軸于.
解法一: ,
,
,
假設(shè),則,
即,
,
(舍去),
因此,當(dāng)時,與的面積相等.
解法二:
,
(舍去)
因此,當(dāng)時,與的面積相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬州三中初中數(shù)學(xué)組深知人生最具好奇心和幻想力、創(chuàng)造力的時期是中學(xué)時代,經(jīng)研究,為我校每一個初中生推薦一本中學(xué)生素質(zhì)數(shù)育必讀書《數(shù)學(xué)的奧秘》,這本書就是專門為好奇的中學(xué)生準(zhǔn)備的.這本書不但給于我們知識,解答生活中的疑惑,更重要的是培養(yǎng)我們細(xì)致觀察、認(rèn)真思考、勤于動手的能力.經(jīng)過一學(xué)期的閱讀和學(xué)習(xí),為了了解學(xué)生閱讀效果,我們從初一、初二的學(xué)生中隨機各選20名,對《數(shù)學(xué)的奧秘》此書閱讀效果做測試(此次測試滿分:100分).通過測試,我們收集到20名學(xué)生得分的數(shù)據(jù)如下:
初一 | 96 | 100 | 89 | 95 | 62 | 75 | 93 | 86 | 86 | 93 |
95 | 95 | 88 | 94 | 95 | 68 | 92 | 80 | 78 | 90 | |
初二 | 100 | 98 | 96 | 95 | 94 | 92 | 92 | 92 | 92 | 92 |
86 | 84 | 83 | 82 | 78 | 78 | 74 | 64 | 60 | 92 |
通過整理,兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差如表:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
初一 | 87.5 | 91 | m | 96.15 |
初二 | 86.2 | n | 92 | 113.06 |
某同學(xué)將初一學(xué)生得分按分?jǐn)?shù)段(,,,),繪制成頻數(shù)分布直方圖,初二同學(xué)得分繪制成扇形統(tǒng)計圖,如圖(均不完整),初一學(xué)生得分頻數(shù)分布直方圖 初二學(xué)生得分扇形統(tǒng)計圖(注:x表示學(xué)生分?jǐn)?shù))
請完成下列問題:
(1)初一學(xué)生得分的眾數(shù)________;初二學(xué)生得分的中位數(shù)________;
(2)補全頻數(shù)分布直方圖;扇形統(tǒng)計圖中,所對用的圓心角為________度;
(3)經(jīng)過分析________學(xué)生得分相對穩(wěn)定(填“初一”或“初二”);
(4)你認(rèn)為哪個年級閱讀效果更好,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB//DC,∠A=60°,AD=DC=BC=4,點E沿A→D→C→B運動,同時點F沿A→B→C運動,運動速度均為每秒1個單位,當(dāng)兩點相遇時,運動停止.則△AEF的面積y與運動時間x秒之間的圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某校教學(xué)樓正前方有一棵大樹DE,高度是10米,從教學(xué)樓頂端A測得大樹頂端E的俯角α是45°,大樹低端D到教學(xué)樓前臺階底邊的水平距離CD是15米,臺階坡長BC是6米,臺階的坡度i=1:,求教學(xué)樓AB的高度約為多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程的根可視為函數(shù)的圖象與函數(shù)的圖象交點的橫坐標(biāo),則方程的實根所在的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店準(zhǔn)備銷售一種多功能旅行背包,計劃從廠家以每個120元的價格進貨.
(1)經(jīng)過市場調(diào)查發(fā)現(xiàn),當(dāng)每個背包的售價為140元時,月均銷量為980個,售價每增長10元,月均銷量就相應(yīng)減少30個,若使這種背包的月均銷量不低于800個,每個背包售價應(yīng)不高于多少元?
(2)在實際銷售過程中,由于原材料漲價和生產(chǎn)成本增加的原因,每個背包的進價為150元,而每個背包的售價比(1)中最高售價減少了a%(a>0),月均銷量比(1)中最低月均銷量800個增加了5a%,結(jié)果該店銷售該背包的月均利潤達到了40000元,求在實際銷售過程中每個背包售價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于及一個矩形給出如下定義:如果上存在到此矩形四份頂點距離都相等的點,那么稱是該矩形的“等距圓”,如圖,平面直角坐標(biāo)系中,矩形的頂點坐標(biāo)為,頂點在軸上,,且的半徑為.
(1)在,,中可以成為矩形的“等距圓”的圓心的是__________.
(2)如果點在直線上,且是矩形的“等距圓”,那么點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某某用戶培育了甲乙兩種番茄,各隨機抽取了10棵幼苗,測試高度如下(單位:cm)
甲:10,9,10,10,13,8,7,12,10,11
乙:9,10,8,11,10,11,10,9,10,12
你認(rèn)為哪種番茄長得比較整齊?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的一種產(chǎn)品按照質(zhì)量由高到低分為A,B,C,D四級,為了增加產(chǎn)量、提高質(zhì)量,該公司改進了一次生產(chǎn)工藝,使得生產(chǎn)總量增加了一倍.為了解新生產(chǎn)工藝的效果,對改進生產(chǎn)工藝前、后的四級產(chǎn)品的占比情況進行了統(tǒng)計,繪制了如下扇形圖:
根據(jù)以上信息,下列推斷合理的是( 。
A.改進生產(chǎn)工藝后,A級產(chǎn)品的數(shù)量沒有變化
B.改進生產(chǎn)工藝后,B級產(chǎn)品的數(shù)量增加了不到一倍
C.改進生產(chǎn)工藝后,C級產(chǎn)品的數(shù)量減少
D.改進生產(chǎn)工藝后,D級產(chǎn)品的數(shù)量減少
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com