【題目】如圖,點(diǎn)的坐標(biāo)為,點(diǎn),分別在軸,軸的正半軸上運(yùn)動(dòng),且,下列結(jié)論:
①
②當(dāng)時(shí)四邊形是正方形
③四邊形的面積和周長(zhǎng)都是定值
④連接,,則,其中正確的有( )
A.①②B.①②③C.①②④D.①②③④
【答案】A
【解析】
過(guò)P作PM⊥y軸于M,PN⊥x軸于N,易得出四邊形PMON是正方形,推出OM=OM=ON=PN=2,證得△APM≌△BPN,可對(duì)①進(jìn)行判斷,推出AM=BN,求出OA+OB=ON+OM=4,當(dāng)OA=OB時(shí),OA=OB=2,然后可對(duì)②作出判斷,由△APM≌△BPN可對(duì)四邊形OAPB的面積作出判斷,由OA+OB=4,然后依據(jù)AP和PB的長(zhǎng)度變化情況可對(duì)四邊形OAPB的周長(zhǎng)作出判斷,求得AB的最大值以及OP的長(zhǎng)度可對(duì)④作出判斷.
過(guò)P作PM⊥y軸于M,PN⊥x軸于N,
∵P(2,2),
∴PN=PM=2.
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
則四邊形MONP是正方形,
∴OM=ON=PN=PM=2,
∵∠MPN=∠APB=90°,
∴∠MPA=∠NPB.
在△MPA≌△NPB中,
,
∴△MPA≌△NPB,
∴PA=PB,故①正確.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=2+2=4.
當(dāng)OA=OB,即OA=OB=2時(shí),
則點(diǎn)A、B分別與點(diǎn)M、N重合,此時(shí)四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB,
∴.
∵OA+OB=4,PA=PB,且PA和PB的長(zhǎng)度會(huì)不斷的變化,故周長(zhǎng)不是定值,故③錯(cuò)誤.
∵∠AOB+∠APB=180°,
∴點(diǎn)A、O、B、P共圓,且AB為直徑,所以AB≥OP,故④錯(cuò)誤.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校開(kāi)設(shè)“慈善基金”活動(dòng)以來(lái),受到同學(xué)們的廣泛幫助,學(xué)校為了解全校學(xué)生捐款的情況,隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并制成如圖不完整的統(tǒng)計(jì)圖表.
捐款金額 | 1元 | 2元 | 3元 | 4元 | 5元及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
(1)a= ,b= ;
(2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中的3元所對(duì)應(yīng)的圓心角的度數(shù);
(4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,統(tǒng)計(jì)該校學(xué)生在5元及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片中,,,將沿折疊,使點(diǎn)落在點(diǎn)處,交于點(diǎn),則的長(zhǎng)等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)的點(diǎn)滿足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn)叫做 “整點(diǎn)”.例如:、都是“整點(diǎn)”,拋物線()與軸交于兩點(diǎn),若該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個(gè)整點(diǎn),則的取值范圍是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,是的弦,過(guò)點(diǎn)的切線交延長(zhǎng)線于點(diǎn).
(Ⅰ)若,求的度數(shù);
(Ⅱ)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)“隔離直線”給出如下定義:點(diǎn)是圖形上的任意一點(diǎn),點(diǎn)是圖形上的任意一點(diǎn),若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為 .
(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標(biāo)軸平行,直角頂點(diǎn)的坐標(biāo)是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達(dá)式:若不存在,請(qǐng)說(shuō)明理由;
(3)正方形的一邊在軸上,其它三邊都在軸的左側(cè),點(diǎn)是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請(qǐng)直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸的正半軸上,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到,過(guò)點(diǎn)作軸的垂線,垂足為,連接交軸于點(diǎn).
(1)當(dāng)點(diǎn)在第三象限時(shí),求實(shí)數(shù)的取值范圍;
(2)在(1)的條件下,設(shè),當(dāng)取得最大值時(shí),求圖象經(jīng)過(guò)兩點(diǎn)的二次函數(shù)的解析式;
(3)在(2)的條件下,將直線向上平移個(gè)單位后與二次函數(shù)的圖象交點(diǎn)的橫坐標(biāo)為,若,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,分別將弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過(guò)圓心,若⊙O的半徑為4,則四邊形ABCD的面積是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,對(duì)角線AC、BD交于點(diǎn)O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com