【題目】如圖.在平行四邊形中,分別為的中點(diǎn),連結(jié)

求證:

1

2)若,證明:四邊形是菱形。

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)平行四邊形的性質(zhì)可得AD=BC,∠A=C,DC=AB,再結(jié)合條件可得AE=CF,再利用SAS證明ADE≌△CBF即可;

2)首先利用平行四邊形的性質(zhì)證明DFEB,DF=EB,可得四邊形DEBF是平行四邊形,再利用直角三角形的性質(zhì)可得DE=AB,進(jìn)而可得DE=EB,從而可證明四邊形是菱形.

證明:(1)∵四邊形ABCD是平行四邊形,

AD=BC,∠A=C,DC=AB

E,F分別為邊AB、CD的中點(diǎn),

DF=CF=DC,AE=BE=AB,

AE=CF,

ADECBF

,

∴△ADE≌△CBFSAS);

2)∵邊形ABCD是平行四邊形,

DC=ABCDAB,

DFEB,

EF分別為邊AB、CD的中點(diǎn),

DF=CF=DC,AE=BE=AB,

DF=EB

∴四邊形DEBF是平行四邊形,

∵∠ADB=90°

DE=AB,

DE=EB,

∴四邊形DEBF是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+3經(jīng)過A(30),B(10)兩點(diǎn)(如圖1),頂點(diǎn)為M.

(1)ab的值;

(2)設(shè)拋物線與y軸的交點(diǎn)為Q(如圖1),直線y=2x+9與直線OM交于點(diǎn)D. 現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時,Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)MQ間所夾的曲線MQ掃過的區(qū)域的面積;

(3)設(shè)直線y=2x+9y軸交于點(diǎn)C,與直線OM交于點(diǎn)D(如圖2).現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.若平移的拋物線與射線CD(含端點(diǎn)C)沒有公共點(diǎn)時,試探求其頂點(diǎn)的橫坐標(biāo)h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個函數(shù),當(dāng)自變量xn時,函數(shù)值y等于4n,我們稱n為這個函數(shù)的二合點(diǎn),如果二次函數(shù)ymx2+x+1有兩個相異的二合點(diǎn)x1,x2,且x1x21,則m的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:均為等腰直角三角形,,,,連接.

1)如圖1所示,線段的數(shù)量關(guān)系是_____,位置關(guān)系是_____

2)在圖1中,若點(diǎn)M、P、N分別為的中點(diǎn),連接,請判斷的形狀,并說明理由;

3)如圖2所示,若M、NP分別為上的點(diǎn),且滿足,連接,則線段長度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某海防哨所發(fā)現(xiàn)在它的北偏西,距離為處有一艘船,該船向正東方向航行,經(jīng)過到達(dá)哨所東北方向的處,則該船的航速為每小時___.(精確到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天門山索道是世界最長的高山客運(yùn)索道,位于張家界天門山景區(qū).在一次檢修維護(hù)中,檢修人員從索道A處開始,沿ABC路線對索道進(jìn)行檢修維護(hù).如圖:已知米,米,AB與水平線的夾角是,BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結(jié)果精確到1米,參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)和點(diǎn),與軸交于點(diǎn).

1)求此拋物線的解析式;

2)若點(diǎn)是直線下方的拋物線上一動點(diǎn)(不點(diǎn),重合),過點(diǎn)軸的平行線交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.

①用含的代數(shù)式表示線段的長;

②連接,,求的面積最大時點(diǎn)的坐標(biāo);

3)設(shè)拋物線的對稱軸與交于點(diǎn),點(diǎn)是拋物線的對稱軸上一點(diǎn),軸上一點(diǎn),是否存在這樣的點(diǎn)和點(diǎn),使得以點(diǎn)、、為頂點(diǎn)的四邊形是菱形?如果存在,請直接寫出點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,C為的中點(diǎn),過點(diǎn)C作直線CD⊥AE于D,連接AC,BC.

(1試判斷直線CD與⊙O的位置關(guān)系,并說明理由;

(2若AD=2,AC=,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點(diǎn)A測得小島P在北偏東60°方向上,航行12海里到達(dá)B點(diǎn),這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案