【題目】已知:和均為等腰直角三角形,,,,連接.
(1)如圖1所示,線段與的數(shù)量關(guān)系是_____,位置關(guān)系是_____;
(2)在圖1中,若點(diǎn)M、P、N分別為的中點(diǎn),連接,請(qǐng)判斷的形狀,并說(shuō)明理由;
(3)如圖2所示,若M、N、P分別為上的點(diǎn),且滿足,,連接,則線段長(zhǎng)度是多少?
【答案】(1)相等,垂直;(2)為等腰直角三角形,證明見(jiàn)解析;(3).
【解析】
(1)延長(zhǎng)BD與EC相交于F,證明△ABD≌△ACE,根據(jù)全等三角形的性質(zhì)可得BD=CE,,再進(jìn)一步證明可得∠BFC=90°,由此可證明與垂直且相等;
(2)結(jié)合(1),根據(jù)中位線的定理,可推出為等腰直角三角形;
(3)證明△CPN∽△CDB,△DPM∽△DCE,根據(jù)相似三角形的性質(zhì)可求得NP和MP的值,結(jié)合(2)可證明∠NPM=90°,根據(jù)勾股定理可求得MN的長(zhǎng)度.
解:(1)如下圖延長(zhǎng)BD與EC相交于F,
∵和均為等腰直角三角形,,
∴
∴
又∵,
∴△ABD≌△ACE(SAS)
∴BD=CE,,
∵
∴,
∴
∴,即
∴,即.
故線段與的數(shù)量關(guān)系是相等,位置關(guān)系是垂直.答案為:相等,垂直.
(2)為等腰直角三角形,理由如下:
∵點(diǎn)M、P、N分別為的中點(diǎn),
∴NP和MP分別為△BCD和△ECD的中位線,
∴
∴,
由(1)得BD=CE,
∴,
由(1)得,
∴
∴,即.
∴為等腰直角三角形.
(3)∵
∴
又∵∠BCD=∠BCD
∴△CPN∽△CDB
∴,,
∴NP//BD,
∵
∴,
同理可證△DPM∽△DCE,,MP//EC,
∴
與(2)同理可證,
∴在Rt△中,根據(jù)勾股定理
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組為了解我市氣溫變化情況,記錄了今年月份連續(xù)天的最低氣溫(單位:℃):.關(guān)于這組數(shù)據(jù),下列結(jié)論不正確的是( )
A.平均數(shù)是 B.中位數(shù)是 C.眾數(shù)是 D.方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視“經(jīng)典詠流傳”開(kāi)播以來(lái)受到社會(huì)廣泛關(guān)注.我市某校就“中華文化我傳承——地方戲曲進(jìn)校園”的喜愛(ài)情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問(wèn)題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類(lèi)有__________人;
(4)在抽取的A類(lèi)5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹(shù)形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人民生活水平不斷提高,我市 “初中生帶手機(jī)”現(xiàn)象也越來(lái)越多,為了了解家長(zhǎng)對(duì)此現(xiàn)象的態(tài)度,某校數(shù)學(xué)課外活動(dòng)小組隨機(jī)調(diào)查了若干名學(xué)生家長(zhǎng),并將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),得出如下所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
問(wèn) (1)這次調(diào)查的學(xué)生家長(zhǎng)總?cè)藬?shù)為 .
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并求出持“很贊同”態(tài)度的學(xué)生家長(zhǎng)占被調(diào)查總?cè)藬?shù)的百分比.
(3)求扇形統(tǒng)計(jì)圖中表示學(xué)生家長(zhǎng)持“無(wú)所謂”態(tài)度的扇形圓心角的度數(shù).
(4)該校共有學(xué)生1200人,求贊同的家長(zhǎng)的人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AD、BD分別是的內(nèi)角∠BAC、∠ABC的平分線,過(guò)點(diǎn)A作AE⊥AD,交BD的延長(zhǎng)線于點(diǎn)E.
(1)求證:;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求BC:AB的值;
(3)如果∠ABC是銳角,且與相似,求∠ABC的度數(shù),并直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx-2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).
⑴求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
⑵判斷△ABC的形狀,證明你的結(jié)論;
⑶點(diǎn)M(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+DM的值最小時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的圓心O在△ABC的邊AC上,AC與⊙O分別交于C,D兩點(diǎn),⊙O與邊AB相切,且切點(diǎn)恰為點(diǎn)B.
(1)求證:∠A+2∠C=90°;
(2)若∠A=30°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商業(yè)集團(tuán)新進(jìn)了40臺(tái)空調(diào)機(jī),60臺(tái)電冰箱,計(jì)劃調(diào)配給下屬的甲、乙兩個(gè)連鎖店銷(xiāo)售,其中70臺(tái)給甲連鎖店,30臺(tái)給乙連鎖店.兩個(gè)連鎖店銷(xiāo)售這兩種電器每臺(tái)的利潤(rùn)(單位:元)如下表:
空調(diào)機(jī) | 電冰箱 | |
甲連鎖店 | 200 | 170 |
乙連鎖店 | 160 | 150 |
設(shè)集團(tuán)調(diào)配給甲連鎖店臺(tái)空調(diào)機(jī),集團(tuán)賣(mài)出這100臺(tái)電器的總利潤(rùn)為(元).
(1)求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;
(2)為了促銷(xiāo),集團(tuán)決定僅對(duì)甲連鎖店的空調(diào)機(jī)每臺(tái)讓利元銷(xiāo)售,其他的銷(xiāo)售利潤(rùn)都不變,并且讓利后每臺(tái)空調(diào)機(jī)的利潤(rùn)比甲連鎖店銷(xiāo)售每臺(tái)電冰箱的利潤(rùn)至少高出10元,問(wèn)該集團(tuán)應(yīng)該如何設(shè)計(jì)調(diào)配方案,能使總利潤(rùn)達(dá)到最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知二次函數(shù)y=-x2+bx+c的圖像與x軸的交點(diǎn)為點(diǎn)A(3,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),連接AC.
(1)求這個(gè)二次函數(shù)的解析式;
(2)在(1)中位于第一象限內(nèi)的拋物線上是否存在點(diǎn)D,使得△ACD的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△ACD面積的最大值,若不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線上是否存在點(diǎn)E,使得△ACE是以AC為直角邊的直角三角形如果存在,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo)即可;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com