【題目】如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值;若不存在,請說明理由.
【答案】(1)y=-x2+x+4;(2)PM=-m2+4m(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1.
【解析】
試題分析:(1)將A(3,0),C(0,4)代入y=ax2-2ax+c,運用待定系數(shù)法即可求出拋物線的解析式;
(2)先根據A、C的坐標,用待定系數(shù)法求出直線AC的解析式,進而根據拋物線和直線AC的解析式分別表示出點P、點M的坐標,即可得到PM的長;
(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應,則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據相似三角形對應邊的比相等列出比例式,求出m的值.
試題解析:(1)∵拋物線y=ax2-2ax+c(a≠0)經過點A(3,0),點C(0,4),
∴,
解得.
∴拋物線的解析式為y=-x2+x+4;
(2)設直線AC的解析式為y=kx+b,
∵A(3,0),點C(0,4),
∴,
解得.
∴直線AC的解析式為y=-x+4.
∵點M的橫坐標為m,點M在AC上,
∴M點的坐標為(m,-m+4),
∵點P的橫坐標為m,點P在拋物線y=-x2+x+4上,
∴點P的坐標為(m,-m2+m+4),
∴PM=PE-ME=(-m2+m+4)-(-m+4)=-m2+4m,
即PM=-m2+4m(0<m<3);
(3)在(2)的條件下,連結PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3-m,EM=-m+4,CF=m,若以P、C、F為頂點的三角形和△AEM相似,情況:
①P點在CD上方,則PF=-m2+m+4-4=-m2+m.
若△PFC∽△AEM,則PF:AE=FC:EM,
即(-m2+m):(3-m)=m:(-m+4),
∵m≠0且m≠3,
∴m=;
②若△CFP∽△AEM,則CF:AE=PF:EM,
即m:(3-m)=(-m2+m):(-m+4),
∵m≠0且m≠3,
∴m=1.
綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點,連接BM,MN,BN.
(1)求證:BM=MN;
(2)若∠BAD=60°,AC平分,AC=2, 寫出求BN長的思路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題是真命題的是( )
A.在一個三角形中,至多有兩個內角是鈍角
B.三角形的兩邊之和小于第三邊
C.在一個三角形中,至多有兩個內角是銳角
D.在同一平面內,垂直于同一直線的兩直線平行
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)y=kx+b的圖象交于點A、B,點A、B的橫坐標分別為1,﹣2,一次函數(shù)圖象與y軸的交于點C,與x軸交于點D.
(1)求一次函數(shù)的解析式;
(2)在第三象限的反比例圖象上是否存在一個點P,使得S△ODP=2S△OCA?若存在,請求出來P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com