【題目】如圖,已知點D為OB上的一點,按下列要求進行尺規(guī)作圖(保留作圖痕跡),并回答問題.
(1)作∠AOB的平分線OC,在OC上取一點P使得OP=a;
(2)過點P作OA邊上的高;
(3)在邊OA上取一點E,使得PE=PD,請寫出∠OEP與∠ODP的數(shù)量關(guān)系.
【答案】見解析
【解析】
(1)以點O為圓心,以任意長為半徑畫弧與∠AOB的兩邊分別相交,再以兩交點為圓心,以大于兩交點之間的距離的一半為半徑畫弧,相交于一點,過這一點與O作射線OC即可;在OC上取一點P,使得OP=a;
(2)一點P為原心,任意長半徑與OA相交于兩點,在以該兩點為畫弧,兩弧交于一點,鏈接改點與點P,即為所求
(3)以O為圓心,以OD為半徑作弧,交OA于E2,連接PE2,作PM⊥OA于M,PN⊥OB于N,根據(jù)角平分線上的點到角的兩邊的距離相等可得PM=PN,利用HL證明△E2PM≌△DPN,得出∠OE2P=∠ODP,再根據(jù)平角的定義即可求解.
解:(1)如圖,OC即為所求;如圖,OP=a;
(2) 如圖所示.
(3)∠OEP=∠ODP或∠OEP+∠ODP=180°.
理由是:以O為圓心,以OD為半徑作弧,交OA于E2,連接PE2,作PM⊥OA于M,
PN⊥OB于N,則PM=PN.
在△E2PM和△DPN中,
∴△E2PM≌△DPN(HL),
∴∠OE2P=∠ODP;
以P為圓心,以PD為半徑作弧,交OA于另一點E1,連接PE1,
則此點E1也符合條件PD=PE1,
∵PE2=PE1=PD,
∴∠PE2E1=∠PE1E2,
∵∠OE1P+∠E2E1P=180°,
∵∠OE2P=∠ODP,
∴∠OE1P+∠ODP=180°,
∴∠OEP與∠ODP所有可能的數(shù)量關(guān)系是:∠OEP=∠ODP或∠OEP+∠ODP=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠BAC=∠EAD=90o.
(1)判斷∠BAE與∠CAD的大小關(guān)系,并說明理由.
(2)當∠EAC=60o時,求∠BAD的大小.
(3)探究∠EAC與∠BAD的數(shù)量關(guān)系,請直接寫出結(jié)果,不要求說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,線段BC的延長線過點E,與線段AD交于點F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,則∠DEF的度數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.M為AD中點,連接CM交BD于點N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為直線AB上一點,∠AOC=48°,OD平分∠AOC,OE⊥OD交于點O.
(1)求出∠BOD的度數(shù);
(2)試用計算說明∠COE=∠BOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D為△ABC外一點,DC與AB交于點O,且∠BDC=∠BAC.
(1)求證:∠ABD=∠ACD;
(2)過點A作AM⊥CD于M,求證:BD+DM=CM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點E從D點出發(fā),以每秒4個單位的速度沿D→A→D勻速移動,點F從點C出發(fā),以每秒1個單位的速度沿CB向點B作勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當有一個點到達終點時,其余兩點也隨之停止運動,假設(shè)移動時間為t秒.
(1)試說明:AD∥BC;
(2)在移動過程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請你探究這樣的情況會出現(xiàn)幾次?并分別求出此時的移動時間t和G點的移動距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C,D四點在同一條直線上,點C是線段AB的中點,點D在線段AB上.
(1)如圖1,若AB=12,BD=BC,求線段CD的長度;
(2)如圖2,點E是線段AB上一點,且AE=2BE,當3AD=2BD時,探究線段CD與CE之間的數(shù)量關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點坐標如表所示,下列說法錯誤的是( )
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | -6 | 0 | 4 | 6 | 6 | … |
A. 拋物線與y軸的交點為(0,6) B. 拋物線的對稱軸是在y軸的右側(cè);
C. 拋物線一定經(jīng)過點(3,0) D. 在對稱軸左側(cè),y隨x增大而減。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com