【題目】如圖,某建筑物BC上有一旗桿AB,小明在與BC相距12m的F處,由E點觀測到旗桿頂部A的仰角為52°、底部B的仰角為45°,小明的觀測點與地面的距離EF為.6m.
⑴求建筑物BC的高度;
⑵求旗桿AB的高度.(結(jié)果精確到0.1m.參考數(shù)據(jù):≈1.41,sin52°≈0.79,tan52°≈1.28)
【答案】(1)建筑物BC的高度為13.6m.
(2)旗桿AB的高度約為3.4m.
【解析】
(1)先過點E作ED⊥BC于D,由已知底部B的仰角為45°得BD=ED=FC=12,DC=EF=1.6,從而求出BC.
(2)由已知由E點觀測到旗桿頂部A的仰角為52°可求出AD,則AB=AD-BD.
解:(1)過點E作ED⊥BC于D,
根據(jù)題意得:EF⊥FC,ED∥FC,
∴四邊形CDEF是矩形,
已知底部B的仰角為45°即∠BED=45°,
∴∠EBD=45°,
∴BD=ED=FC=12,
∴BC=BD+DC=BD+EF=12+1.6=13.6,
答:建筑物BC的高度為13.6m.
(2)已知由E點觀測到旗桿頂部A的仰角為52°,即∠AED=52°,
∴AD=EDtan52°
≈12×1.28≈15.4,
∴AB=AD-BD=15.4-12=3.4.
答:旗桿AB的高度約為3.4m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,以AB為直徑的⊙O分別交邊AD和對角線BD于點E、F,連接EF并延長交邊BC于點G,連接BE。
(1)求證:AE=DE;
(2)若⊙O的半徑為2,求EG的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a,b,c是常數(shù),且)與x軸交于A、B兩點,頂點P(m,n),下列結(jié)論中,其中正確的有( 。
①;②若在拋物線上,則;③關(guān)于x的方程有實數(shù)解,則;④當(dāng)時,△ABP為等腰直角三角形
A.①②B.③④C.②④D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點.將△ABC繞點A順時針旋轉(zhuǎn)a角(0°<a<180°),得到△AB′C′(如圖2),連接DB',EC'.
(1)探究DB'與EC'的數(shù)量關(guān)系,并結(jié)合圖2給予證明;
(2)填空:
①當(dāng)旋轉(zhuǎn)角α的度數(shù)為_____時,則DB'∥AE;
②在旋轉(zhuǎn)過程中,當(dāng)點B',D,E在一條直線上,且AD=時,此時EC′的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形,例如△ABC中,三邊分別為a、b、c,若滿足b2=ac,則稱△ABC為比例三角形,其中b為比例中項.
(1)已知△ABC是比例三角形,AB=2,BC=3,請直接寫出所有滿足條件的AC的長;
(2)如圖,在四邊形ABCD中,AD∥BC,對角線BD平分∠ABC,∠BAC=∠ADC.
①請直接寫出圖中的比例三角形;
②作AH⊥BD,當(dāng)∠ADC=90°時,求的值;
(3)三邊長分別為a、b、c的三角形是比例三角形,且b為比例中項,已知拋物線y=ax2+bx+c與y軸交于點B,頂點為A,O為坐標(biāo)原點,以OB為直徑的⊙M經(jīng)過點A,記△OAB的面積為S1,⊙M的面積為S2,試問S1:S2的值是否為定值?若是請求出定值,若不是請求出S1:S2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是BC邊的中點,BD=2,tanB=.
(1)求AD和AB的長;
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在RtABC中 ,C=90°,a 、b 、c 分別為∠A 、∠B 、∠C的對邊,a、 b是關(guān)于的方程的兩根,那么AB邊上的中線長是()
A.B.C.5D.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是AB延長線上的點,AC的垂直平分線交半圓于點D,交AC于點E,連接DA,DC.已知半圓O的半徑為3,BC=2.
(1)求AD的長.
(2)點P是線段AC上一動點,連接DP,作∠DPF=∠DAC,PF交線段CD于點F.當(dāng)△DPF為等腰三角形時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子里有1個紅球,1個黃球和n個白球,它們除顏色外其余都相同.
(1)從這個袋子里摸出一個球,記錄其顏色,然后放回,搖均勻后,重復(fù)該實驗,經(jīng)過大量實驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求n的值;
(2)在(1)的條件下,先從這個袋中摸出一個球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個球,記錄其顏色.請用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com