【題目】如圖,已知BC∥GE,AF∥DE,∠1=50°.
(1)求∠AFG的度數;
(2)若AQ平分∠FAC,交BC于點Q,且∠Q=15°,求∠ACB的度數.
【答案】(1)50°;(2)80°.
【解析】
試題分析:(1)先根據BC∥EG得出∠E=∠1=50°,再由AF∥DE可知∠AFG=∠E=50°;
(2)作AM∥BC,由平行線的傳遞性可知AM∥EG,故∠FAM=∠AFG,再根據AM∥BC可知∠QAM=∠Q,故∠FAQ=∠AFM+∠FAQ,再根據AQ平分∠FAC可知∠MAC=∠QAC+∠QAM=80°,根據AM∥BC即可得出結論.
試題解析:(1)∵BC∥EG,
∴∠E=∠1=50°.
∵AF∥DE,
∴∠AFG=∠E=50°;
(2)作AM∥BC,
∵BC∥EG,
∴AM∥EG,
∴∠FAM=∠AFG=50°.
∵AM∥BC,
∴∠QAM=∠Q=15°,
∴∠FA Q=∠AFM+∠MAQ=65°.
∵AQ平分∠FAC,
∴∠QAC=∠FA Q=65°,
∴∠M AC=∠QAC+∠QAM=80°.
∵AM∥BC,
∴∠ACB=∠MAC=80°.
科目:初中數學 來源: 題型:
【題目】某地圖書館為了滿足群眾多樣化閱讀的需求,決定購買甲、乙兩種品牌的電腦若干組建電子閱覽室.經了解,甲、乙兩種品牌的電腦單價分別3100元和4600元.
(1)若購買甲、乙兩種品牌的電腦共50臺,恰好支出200000元,求甲、乙兩種品牌的電腦各購買了多少臺?
(2)若購買甲、乙兩種品牌的電腦共50臺,每種品牌至少購買一臺,且支出不超過160000元,共有幾種購買方案?并說明哪種方案最省錢.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點是直線上一點,,是的平分線.
(1)當點,在直線的同側,且在的內部時(如圖1所示 ), 設,求的大;
(2)當點與點在直線的兩旁(如圖2所示),(1)中的結論是否仍然成立?請給出你的結論,并說明理由;
(3)將圖2 中的射線繞點順時針旋轉,得到射線,設,若,則的度數是 (用含的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】,是平面直角坐標系中的任意兩點,我們把叫做P1,P2兩點間的“直角距離”,記作d(P1,P2);比如:點P(2,-4),Q(1,0),則d(P,Q)=,已知Q(2,1),動點P(x,y)滿足d(P,Q)=3,且x,y均為整數,則滿足條件的點P有________個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD的邊長為6,E、F、P分別是AB、CD、AD上的點(均不與正方形頂點重合)且PE=PF,PE⊥PF.
(1)求證:AE+DF=6
(2)設AE=,五邊形EBCFP的面積為,求與的函數關系式,并求出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在中,,,D是斜邊AB上任一點,于E, 交CD的延長線于點F.于點H,交AE于點G.
(1)直接寫出EF、AE和BF之間的關系;
(2)探究BD與CG之間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數圖象.
(1)根據圖象,直接寫出汽車行駛400千米時,油箱內的剩余油量,并計算加滿油時油箱的油量;
(2)求關于的函數關系式,并計算該汽車在剩余油量5升時,已行駛的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請在下面括號里補充完整證明過程:
已知:如圖,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于點E,交CB于點F,且∠CEF=∠CFE.求證:CD⊥AB.
證明:∵AF平分∠CAB (已知)
∴ ∠1=∠2( )
∵∠CEF=∠CFE , 又∠3=∠CEF (對頂角相等)
∴∠CFE=∠3(等量代換)
∵在△ACF中,∠ACF=90°(已知)
∴( )+∠CFE=90°( )
∵∠1=∠2, ∠CFE=∠3(已證) ∴( )+( )=90°(等量代換)
在△AED中, ∠ADE=90°( 三角形內角和定理)
∴ CD⊥AB( ).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com