【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得AC之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。

A.5 cmB.4.8 cmC.4.6 cmD.4 cm

【答案】A

【解析】

ARBCR,ASCDS,根據(jù)題意先證出四邊形ABCD是平行四邊形,再由AR=AS得平行四邊形ABCD是菱形,再根據(jù)根據(jù)勾股定理求出AB即可.

解:作ARBCRASCDS,連接AC、BD交于點O

由題意知:ADBC,ABCD
∴四邊形ABCD是平行四邊形,
∵兩個矩形等寬,
AR=AS,
ARBC=ASCD,
BC=CD,
∴平行四邊形ABCD是菱形,
ACBD
RtAOB中,∵OA=3,OB=4,
AB==5,
故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線向右平移2個單位,得到拋物線的圖象是拋物線對稱軸上的一個動點,直線平行于y,分別與直線、拋物線交于點A、是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值, ______ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】書法是我國的文化瑰寶,研習書法能培養(yǎng)高雅的品格.某校為加強書法教學,了解學生現(xiàn)有的書寫能力,隨機抽取了部分學生進行測試,測試結(jié)果分為優(yōu)秀、良好、及格、不及格四個等級,分別用A,B,CD表示,并將測試結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)統(tǒng)計圖中的信息解答以下問題:

1)本次抽取的學生人數(shù)是   ,扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù)是   

2)把條形統(tǒng)計圖補充完整.

3)若該學校共有2800人,等級達到優(yōu)秀的人數(shù)大約有多少?

4A等級的4名學生中有3名女生1名男生,現(xiàn)在需要從這4人中隨機抽取2人參加電視臺舉辦的中學生書法比賽,請用列表或畫樹狀圖的方法,求被抽取的2人恰好是1名男生1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,已知AD=4,AB=3,點P是直線AD上的一點,PEAC,PFBD,EF分別是垂足,AGBD與點G,

(1) 如圖P在線段AD上,求PE+PF的值;

(2) 如圖P在直線AD上,求PEPF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10

1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;

2)求銷售單價為多少元時,該文具每天的銷售利潤最大;

3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案

方案A:該文具的銷售單價高于進價且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤至少為25

請比較哪種方案的最大利潤更高,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形繞點逆時針旋轉(zhuǎn)得正方形.圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設每件商品的售價上漲x元(x為整數(shù)),每周的銷售利潤為y元.

(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?

(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-x+3x軸、y軸分別交于A,B兩點,拋物線y=-x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點O出發(fā),向點A1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B個單位/秒的速度勻速運動,連接PQ,設運動時間為t秒.

1)求拋物線的解析式;

2)問:當t為何值時,△APQ為直角三角形;

3)過點PPE∥y軸,交AB于點E,過點QQF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標;

4)設拋物線頂點為M,連接BP,BMMQ,問:是否存在t的值,使以B,QM為頂點的三角形與以O,B,P為頂點的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案