如圖,二次函數(shù)的圖象開口向上,對(duì)稱軸為直線x=1,圖象經(jīng)過(3,0),下列結(jié)論中,正確的一項(xiàng)是【   】
A.a(chǎn)bc<0B.2a+b<0C.a(chǎn)-b+c<0D.4ac-b2<0
D。
A、根據(jù)圖示知,拋物線開口方向向上,則a>0,
拋物線的對(duì)稱軸
拋物線與y軸交與負(fù)半軸,則c<0,
∴abc>0。故本選項(xiàng)錯(cuò)誤。
B、∵,∴b=-2a,即2a+b=0。故本選項(xiàng)錯(cuò)誤。
C、∵對(duì)稱軸為直線x=1,圖象經(jīng)過(3,0),
∴該拋物線與x軸的另一交點(diǎn)的坐標(biāo)是(-1,0)。
∴當(dāng)x=-1時(shí),y=0,即a-b+c=0。故本選項(xiàng)錯(cuò)誤。
D、根據(jù)圖示知,該拋物線與x軸有兩個(gè)不同的交點(diǎn),則△=b2-4ac>0,即4ac-b2<0。故本選項(xiàng)正確。
故選D。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的圖象如圖所示,則此拋物線的解析式為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年,6月12日為端午節(jié)。在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況。請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問題。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀以下材料,然后解答問題:
材料:將二次函數(shù)的圖象向左平移1個(gè)單位,再向下平移2個(gè)單位,求平移后的拋物線的解析式(平移后拋物線的形狀不變)。
解:在拋物線上任取兩點(diǎn)A(0,3)、B(1,4),由題意知:點(diǎn)A向左平移1個(gè)單位得到,3),再向下平移2個(gè)單位得到,1);點(diǎn)B向左平移1個(gè)單位得到(0,4),再向下平移2個(gè)單位得到(0,2)。
設(shè)平移后的拋物線的解析式為。
則點(diǎn),1),(0,2)在拋物線上。
可得:,解得:。
所以平移后的拋物線的解析式為:
根據(jù)以上信息解答下列問題:
將直線向右平移3個(gè)單位,再向上平移1個(gè)單位,求平移后的直線的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC中,邊BC的長與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關(guān)系式,并求出面積為48時(shí)BC的長;
(2)當(dāng)BC多長時(shí),△ABC的面積最大?最大面積是多少?
(3)當(dāng)△ABC面積最大時(shí),是否存在其周長最小的情形?如果存在,請(qǐng)說出理由,并求出其最小周長;如果不存在,請(qǐng)給予說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線可以由拋物線平移得到,則下列平移過程正確的是(      )
A.先向左平移2個(gè)單位,再向下平移3個(gè)單位
B.先向左平移2個(gè)單位,再向上平移3個(gè)單位
C.先向右平移2個(gè)單位,再向下平移3個(gè)單位
D.先向右平移2個(gè)單位,再向上平移3個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則m的值是
A.-8B.8C.±8D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是常數(shù))
(1)若該函數(shù)的圖像與軸只有一個(gè)交點(diǎn),求的值;
(2)若點(diǎn)在某反比例函數(shù)的圖像上,要使該反比例函數(shù)和二次函數(shù)都是的增大而增大,求應(yīng)滿足的條件以及的取值范圍;
(3)設(shè)拋物線軸交于兩點(diǎn),且,,在軸上,是否存在點(diǎn)P,使△ABP是直角三角形?若存在,求出點(diǎn)P及△ABP的面積;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是【   】
A.(1,3)B.(,3)C.(1,D.(,

查看答案和解析>>

同步練習(xí)冊(cè)答案