【題目】如圖,在△ABC中,點(diǎn)E是BC邊上的一點(diǎn),連接AE,BD垂直平分AE,垂足為F,交AC于點(diǎn)D,連接DE.
(1)若△ABC的周長為18,△DEC的周長為6,求AB的長;
(2)若,,求度數(shù).
【答案】(1)6;(2)57°
【解析】
(1)根據(jù)線段垂直平分線的性質(zhì)得到AB=BE,DA=DE,然后利用三角形的周長求AB得長度;(2)利用三角形外角的性質(zhì)求∠ADB的度數(shù),然后利用等腰三角形三線合一的性質(zhì)求∠ADE的度數(shù),從而使問題得解.
解:(1)∵BD垂直平分AE,垂足為F,交AC于點(diǎn)D
∴AB=BE,DA=DE
∴△DEC的周長=DE+DC+EC=DA+DC+EC=AC+EC=6
△ABC的周長=AB+BC+AC=AB+BE+EC+AC=AB+AB+AC+EC=18
∴2AB=18-6=12
∴AB=6
(2)由(1)可知,BD垂直平分AE ,AB=BE,DA=DE
∴根據(jù)等腰三角形三線合一的性質(zhì)可知∠DBC=∠ABC==14.5°
∠ADB=∠BDE=∠DBC+∠C=14.5°+47°=61.5°
∴∠CDE=180°-61.5°×2=57°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店進(jìn)行了一次水果促銷活動(dòng),在該店一次性購買A種水果的單價(jià)y(元)與購買量x(千克)的函數(shù)關(guān)系如圖所示,
(1)當(dāng)0<x≤5時(shí),單價(jià)y為 元.當(dāng)單價(jià)y=8.8時(shí),x的取值范圍為 .
(2)根據(jù)函數(shù)圖象,求第②段函數(shù)圖象中單價(jià)y(元)與購買量(千克)的函數(shù)關(guān)系式,并寫出x的取值范圍.
(3)促銷活動(dòng)期間,張老師計(jì)劃去該店購買A種水果10千克,那么張老師共需花費(fèi)多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小孟同學(xué)將等腰直角三角板ABC(AC=BC)的直角頂點(diǎn)C放在一直線m上,將三角板繞C點(diǎn)旋轉(zhuǎn),分別過A,B兩點(diǎn)向這條直線作垂線AD,BE,垂足為D,E.
(1)如圖1,當(dāng)點(diǎn)A,B都在直線m上方時(shí),猜想AD,BE,DE的數(shù)量關(guān)系是 ;
(2)將三角板ABC繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置時(shí),點(diǎn)A在直線m上方,點(diǎn)B在直線m下方.(1)中的結(jié)論成立嗎?請(qǐng)你寫出AD,BE,DE的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)將三角板ABC繼續(xù)繞C點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A在直線m的下方,點(diǎn)B在直線m的上方時(shí),請(qǐng)你畫出示意圖,按題意標(biāo)好字母,直接寫出AD,BE,DE的數(shù)量關(guān)系結(jié)論 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.
(1)試說明:△ABC是直角三角形.
(2)請(qǐng)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點(diǎn),且AD⊥BC.
(1)求sinB的值;
(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)E在AB上,BE=2AE,且EF⊥BC,垂足為點(diǎn)F,求支架DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知中,分別是的中點(diǎn),求證.
利用第題的結(jié)論,解決下列問題:
如圖,在四邊形中,,點(diǎn)分別在上,點(diǎn)分別為的中點(diǎn),連接,求長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,連接AC、BD.在四邊形ABCD的外部以BC為一邊作等邊三角形BCE,連接AE.
(1)求證:BD=AE;
(2)若AB=2,BC=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有若干個(gè)邊長為2的正方形,若正方形的一個(gè)頂點(diǎn)是正方形Ⅰ的中心O1,如圖所示,類似的正方形Ⅲ的一個(gè)頂點(diǎn)是正方形Ⅱ的中心O2,并且正方形Ⅰ與正方形Ⅲ不重疊,如果若干個(gè)正方形都按這種方法拼接,需要m個(gè)正方形能使拼接處的圖形的陰影部分的面積等于一個(gè)正方形的面積.現(xiàn)有一拋物線y=mx2+nx+3,其頂點(diǎn)在x軸上,則該拋物線的對(duì)稱軸為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com