【題目】拋物線y=2x2 , y=﹣2x2 , y=2x2+1共有的性質(zhì)是(
A.開口向上
B.對稱軸都是y軸
C.都有最高點
D.頂點都是原點

【答案】B
【解析】解:(1)y=2x2開口向上,對稱軸為y軸,有最低點,頂點為原點;(2)y=﹣2x2開口向下,對稱軸為y軸,有最高點,頂點為原點;(3)y=2x2+1開口向上,對稱軸為y軸,有最低點,頂點為(0,1). 故選B.
【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一條彎曲的公路改成直道,可以縮短路程,其道理用幾何知識解釋正確的是(
A.線段可以比較大小
B.線段有兩個端點
C.兩點之間線段最短
D.過兩點有且只有一條直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列結(jié)論正確的是(
A.∠1=∠3
B.∠1=∠2
C.∠2=∠3
D.∠1=∠2=∠3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.

求證:
(1)FC=AD
(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,直線與x軸,y軸分別交于B,C兩點,拋物線經(jīng)過B,C兩點,與x軸的另一個交點為點A,動點P從點A出發(fā)沿AB以每秒3個單位長度的速度向點B運(yùn)動,運(yùn)動時間為t(0<t<5)秒.

(1)求拋物線的解析式及點A的坐標(biāo);

(2)在點P從點A出發(fā)的同時,動點Q從點B出發(fā)沿BC以每秒3個單位長度的速度向點C運(yùn)動,動點N從點C出發(fā)沿CA以每秒個單位長度的速度向點A運(yùn)動,運(yùn)動時間和點P相同.

①記△BPQ的面積為S,當(dāng)t為何值時,S最大,最大值是多少?

②是否存在△NCQ為直角三角形的情形?若存在,求出相應(yīng)的t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點D是BC的中點,若∠B=50°,則∠DAC的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長方形的周長為10,它的長是a,那么它的寬是(
A.10﹣a
B.10﹣2a
C.5﹣a
D.5﹣2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:
(1)3x(x﹣1)﹣2(x﹣1)
(2)3x2﹣12x+12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是(
A.a+a=a2
B.6a3﹣5a2=a
C.3a2+2a3=5a5
D.3a2b﹣4ba2=﹣a2b

查看答案和解析>>

同步練習(xí)冊答案