【題目】在等腰直角△ABC中,∠ACB=90°,P是線段BC上一動點(與點B、C不重合),連接AP,延長BC至點Q,使得CQ=CP,過點Q作QH⊥AP于點H,交AB于點M.
(1)若∠PAC=α,求∠AMQ的大。ㄓ煤恋氖阶颖硎荆
(2)用等式表示線段MB與PQ之間的數(shù)量關(guān)系,并證明.
【答案】
(1)解:∠AMQ=45°+α;理由如下:
∵∠PAC=α,△ACB是等腰直角三角形,
∴∠BAC=∠B=45°,∠PAB=45°﹣α,
∵QH⊥AP,
∴∠AHM=90°,
∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α
(2)解:PQ= MB;理由如下:
連接AQ,作ME⊥QB,如圖所示:
∵AC⊥QP,CQ=CP,
∴∠QAC=∠PAC=α,
∴∠QAM=45°+α=∠AMQ,
∴AP=AQ=QM,
在△APC和△QME中, ,
∴△APC≌△QME(AAS),
∴PC=ME,
∴△AEB是等腰直角三角形,
∴ PQ= MB,
∴PQ= MB.
【解析】(1)由等腰直角三角形的性質(zhì)得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性質(zhì)即可得出結(jié)論;(2)連接AQ,作ME⊥QB,由AAS證明△APC≌△QME,得出PC=ME,△AEB是等腰直角三角形,由等腰直角三角形的性質(zhì)即可得出結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用等腰直角三角形的相關(guān)知識可以得到問題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點A(x,y)為平面直角坐標(biāo)系內(nèi)的點,若滿足x=y,則把點A 叫做“平衡點”.例如:M(1,1),N(﹣2,-2)都是“平衡點”.當(dāng)﹣1≤x≤3 時,直線y=2x+m 上有“平衡點”,則m 的取值范圍是( )
A.0≤m≤1
B.﹣1≤m≤0
C.﹣3≤m≤3
D.﹣3≤m≤1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點A的坐標(biāo)是(﹣2,3),先把△ABC向右平移4個單位長度得到△A1B1C1 , 再作與△A1B1C1關(guān)于x軸對稱的△A2B2C2 , 則點A的對應(yīng)點A2的坐標(biāo)是( )
A.(﹣3,2)
B.(2,﹣3)
C.(1,﹣2)
D.(﹣1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的統(tǒng)計圖反映了我國與“一帶一路”沿線部分地區(qū)的貿(mào)易情況. 2011﹣2016年我國與東南亞地區(qū)和東歐地區(qū)的貿(mào)易額統(tǒng)計圖
(以上數(shù)據(jù)摘自《“一帶一路”貿(mào)易合作大數(shù)據(jù)報告(2017)》)
根據(jù)統(tǒng)計圖提供的信息,下列推理不合理的是( )
A.與2015年相比,2016年我國與東歐地區(qū)的貿(mào)易額有所增長
B.2011﹣2016年,我國與東南亞地區(qū)的貿(mào)易額逐年增長
C.2011﹣2016年,我國與東南亞地區(qū)的貿(mào)易額的平均值超過4200億美元
D.2016年我國與東南亞地區(qū)的貿(mào)易額比我國與東歐地區(qū)的貿(mào)易額的3倍還多
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y= (x>0)的圖象與直線y=x﹣2交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于x軸的直線,交直線y=x﹣2于點M,過點P作平行于y軸的直線,交函數(shù)y= (x>0)的圖象于點N. ①當(dāng)n=1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;
②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,多邊形的各頂點都在方格紙的格點(橫豎格子線的交錯點)上,這樣的多邊形稱為格點多邊形,它的面積S可用公式S=a+ b﹣1(a是多邊形內(nèi)的格點數(shù),b是多邊形邊界上的格點數(shù))計算,這個公式稱為“皮克定理”.現(xiàn)用一張方格紙共有200個格點,畫有一個格點多邊形,它的面積S=40.
(1)這個格點多邊形邊界上的格點數(shù)b=(用含a的代數(shù)式表示).
(2)設(shè)該格點多邊形外的格點數(shù)為c,則c﹣a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC、BD為圓O的兩條互相垂直的直徑,動點P從圓心O出發(fā),沿O→C→D→O的路線作勻速運動,設(shè)運動時間為t秒,∠APB的度數(shù)為y度,那么表示y與t之間函數(shù)關(guān)系的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,動點P從A點出發(fā),以每秒1個單位長度的速度沿AB向B點運動,同時動點Q從B點出發(fā),以每秒2個單位長度的速度沿BC→CD方向運動,當(dāng)P運動到B點時,P、Q兩點同時停止運動.設(shè)P點運動的時間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com