【題目】如圖,AC、BD為圓O的兩條互相垂直的直徑,動點P從圓心O出發(fā),沿O→C→D→O的路線作勻速運動,設運動時間為t秒,∠APB的度數(shù)為y度,那么表示y與t之間函數(shù)關系的圖象大致為( )

A.
B.
C.
D.

【答案】C
【解析】解:當P與O重合時,∠APB的度數(shù)為90度;
P向C運動過程中,∠APB的度數(shù)逐漸減;
當P運動到C時,利用圓周角定理得到∠APB的度數(shù)為45度;
當P在弧CD上運動時,∠APB的度數(shù)不變,都為45度;
當P從D運動到O時,∠APB的度數(shù)逐漸增大,
作出函數(shù)y與t的大致圖象,如圖所示:

故選C.
抓住5個關鍵點:當P與O重合時,P向C運動過程中,當P運動到C時,當P在弧CD上運動時,當P從D運動到O時,結合選項即可確定出y與t的大致圖象.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,直線y=﹣ x+3與x軸、y軸分別交于A、B兩點,點P、Q同時從點A出發(fā),運動時間為t秒.其中點P沿射線AB運動,速度為每秒4個單位長度,點Q沿射線AO運動,速度為每秒5個單位長度.以點Q為圓心,PQ長為半徑作⊙Q.

(1)求證:直線AB是⊙Q的切線;
(2)過點A左側(cè)x軸上的任意一點C(m,0),作直線AB的垂線CM,垂足為M.若CM與⊙Q相切于點D,求m與t的函數(shù)關系式(不需寫出自變量的取值范圍);
(3)在(2)的條件下,是否存在點C,直線AB、CM、y軸與⊙Q同時相切?若存在,請直接寫出此時點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰直角△ABC中,∠ACB=90°,P是線段BC上一動點(與點B、C不重合),連接AP,延長BC至點Q,使得CQ=CP,過點Q作QH⊥AP于點H,交AB于點M.
(1)若∠PAC=α,求∠AMQ的大。ㄓ煤恋氖阶颖硎荆
(2)用等式表示線段MB與PQ之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小敏上午8:00從家里出發(fā),騎車去一家超市購物,然后從這家超市返回家中.小敏離家的路程y(米)和所經(jīng)過的時間x(分)之間的函數(shù)圖象如圖所示.請根據(jù)圖象回答下列問題:

(1)小敏去超市途中的速度是多少?在超市逗留了多少時間?
(2)小敏幾點幾分返回到家?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.

(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使銳角△AOB的面積等于3.求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,BC=3,AC=4,點P在以C為圓心,5為半徑的圓上,連結PA,PB.若PB=4,則PA的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:
(1)x2+3x﹣2=0
(2)(x+8)(x+1)=﹣12.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等腰直角三角形,∠ACB=90°,將△ABC繞點A逆時針旋轉(zhuǎn)75°,得到△AB′C′,過點B′作B′D⊥CA,交CA的延長線于點D,若AC=4,則AD的長為(

A.2
B.3
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+2ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案