【題目】中央電視臺(tái)“幸運(yùn) 52”欄目中的“百寶箱”互動(dòng)環(huán)節(jié),是一種競猜游戲,游戲規(guī)則如下:在20個(gè)商標(biāo)牌中,有5個(gè)商標(biāo)牌的背面注明一定的獎(jiǎng)金額,其余商標(biāo)牌的背面是一張哭臉,若翻到哭臉,就不得獎(jiǎng),參與這個(gè)游戲的觀眾有三次翻牌機(jī)會(huì)(翻過的牌不能再翻).某觀眾前兩次翻牌均獲得若干獎(jiǎng)金,那么他第三次翻牌獲獎(jiǎng)的概率是多少?
【答案】解:∵20個(gè)商標(biāo)中2個(gè)已翻出,還剩18張,18張中還有3張有獎(jiǎng)的,∴第三次翻牌獲獎(jiǎng)的概率是:
【解析】先求出20個(gè)商標(biāo)中還剩的張數(shù),再求出其中有獎(jiǎng)的張數(shù),最后根據(jù)概率公式進(jìn)行計(jì)算即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用概率的意義的相關(guān)知識(shí)可以得到問題的答案,需要掌握任何事件的概率是0~1之間的一個(gè)確定的數(shù),它度量該事情發(fā)生的可能性.小概率事件很少發(fā)生,而大概率事件則經(jīng)常發(fā)生.知道隨機(jī)事件的概率有利于我們作出正確的決策.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點(diǎn)O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請?zhí)砑右粋(gè)條件使矩形ABCD為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.購買江蘇省體育彩票有“中獎(jiǎng)”與“不中獎(jiǎng)”兩種情況,所以中獎(jiǎng)的概率是
B.國家級(jí)射擊運(yùn)動(dòng)員射靶一次,正中靶心是必然事件
C.如果在若干次試驗(yàn)中一個(gè)事件發(fā)生的頻率是 ,那么這個(gè)事件發(fā)生的概率一定也是
D.如果車間生產(chǎn)的零件不合格的概率為 ,那么平均每檢查1000個(gè)零件會(huì)查到1個(gè)次品
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于概率的敘述正確的是( 。
A.某運(yùn)動(dòng)員投籃5次,投中4次,投中的概率為0.8
B.任意拋擲一枚硬幣兩次,結(jié)果是兩個(gè)都是正面的概率是
C.數(shù)學(xué)選擇題,四個(gè)選擇支中有且只有一個(gè)正確,如果從中任選一個(gè),選對的概率為
D.飛機(jī)失事死亡的概率為0.000000000038,因此乘飛機(jī)失事而死亡是不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( )
①AD是∠BAC的平分線; ②∠ADC=60°;
③點(diǎn)D在線段ABC的垂直平分線上; ④BD=2CD.
A. 2個(gè) B. 3個(gè) C. 1個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、EFGH、NHMC都是正方形,邊長分別為a,b,c;A,B,N,E,F(xiàn)五點(diǎn)在同一直線上,則c=(用含有a,b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一根長為22cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在杯子外面的長度為hcm,則h的取值范圍是 ( ).
A. 9cm≤h≤10cm B. 10cm≤h≤11cm C. 12cm≤h≤13cm D. 8cm≤h≤9cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線PQ∥MN,點(diǎn)A在直線PQ上,點(diǎn)C,D在直線MN上,連接AC,AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE與CE相交于點(diǎn)E.
(1)求∠AEC的度數(shù);
(2)若將圖①中的線段AD沿MN向右平移到A1D1如圖②所示位置,此時(shí)A1E平分∠AA1D1,
CE平分∠ACD1,A1E與CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度數(shù);
(3)若將圖①中的線段AD沿MN向左平移到A1D1如圖③所示位置,其他條件與(2)相同,求此時(shí)∠A1EC的度數(shù)(直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com