【題目】如圖(1),直線交x軸于點A,交軸于點C(0,4),拋物線過點A,交y軸于點B(0,-2).點P為拋物線上一個動點,過點P作x軸的垂線PD,過點B作BD⊥PD于點D,連接PB,設點P的橫坐標為.
(1)求拋物線的解析式;
(2)當△BDP為等腰直角三角形時,求線段PD的長;
(3)如圖(2),將△BDP繞點B 逆時針旋轉,得到△BD′P′,當旋轉角∠PBP′=∠OAC,且點P的對應點P′落在坐標軸上時,請直接寫出點P的坐標.
【答案】(1)拋物線的解析式為.(2)或.(3)滿足條件的點P的坐標為(, )、(, )或(、).
【解析】(1)先確定出點A的坐標,再用待定系數(shù)法求出拋物線解析式;
(2)由△BDP為等腰直角三角形,判斷出BD=PD,建立m的方程計算出m,從而求出PD;(3)分點P′落在x軸和y軸兩種情況計算即可.
解:(1)∵點C(0,4)在直線y=﹣x+n上,
∴n=4,∴y=﹣x+4,
令y=0,∴x=3,∴A(3,0),
∵拋物線y= x2+bx+c經(jīng)過點A,交y軸于點B(0,﹣2).
∴c=﹣2,6+3b﹣2=0,
∴b=﹣,
∴拋物線解析式為y=x2﹣x﹣2,
(2)點P為拋物線上一個動點,設點P的橫坐標為m.
∴P(m, m2﹣m﹣2),
∴BD=|m|,PD=|m2﹣m﹣2+2|=|m2﹣m|,
∵△BDP為等腰直角三角形,且PD⊥BD,
∴BD=PD,
∴|m|=|m2﹣m|,
∴m=0(舍),m=,m=,
∴PD=或PD=;
(3)∵∠PBP'=∠OAC,OA=3,OC=4,
∴AC=5,
∴sin∠PBP'=,cos∠PBP'=,
①當點P'落在x軸上時,過點D'作D'N⊥x軸,垂足為N,交BD于點M,
∠DBD'=∠ND'P'=∠PBP',
如圖1,
ND'﹣MD'=2,
∴(m2﹣m)﹣(﹣m)=2,
∴m=(舍),或m=﹣,
如圖2,
ND'+MD'=2,
∴(m2﹣m)+m=2,
∴m=,或m=﹣(舍),
∴P(﹣, )或P(, ),
②當點P'落在y軸上時,如圖3,
過點D′作D′M⊥x軸,交BD于M,過P′作P′N⊥y軸,
∴∠DBD′=∠ND′P′=∠PBP′,
∵P′N=BM,
∴(m2﹣m)=m,
∴m=,
∴P(, ).
∴P(﹣, )或P(, )或P(, ).
“點睛”此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求函數(shù)解析式,銳角三角函數(shù),等腰直角三角形的性質,解本題的關鍵是構造直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥DC,AC和BD相交于點O,E是CD上一點,F(xiàn)在OD上一點,且∠1=∠A.
(1)求證:FE∥OC;
(2)若∠DFE=70°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點F為對角線BD上一點,點E為AB的延長線上一點,DF=BE,CE=CF.求證:(1)△CFD≌△CEB;(2)∠CFE=60°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面每組數(shù)分別是三根小木棒的長度,它們能擺成三角形的是( 。
A. 12cm,3cm,6cm B. 8cm,16cm,8cm C. 6cm,6cm,13cm D. 2cm,3cm,4cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△CEF均為等腰直角三角形,E在△ABC內(nèi),∠CAE+∠CBE=90°,連接BF.
(1)求證:△CAE∽△CBF.
(2)若BE=1,AE=2,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉90°,則旋轉后點D的對應點D′的坐標是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com