【題目】因式分解是初中數(shù)學(xué)中一種重要的恒等變形,它具有廣泛的應(yīng)用,是解決許多數(shù)學(xué)問題的有力工具,例如,一個基本事實:“若ab=0,則a=0或b=0”,那么一元二次方程x2﹣x﹣2=0就可以通過因式分解轉(zhuǎn)化為(x﹣2)(x+1)=0的形式,再由基本事實可得:x﹣2=0或x+1=0,所以方程有兩個解為x=2,x=﹣1.
(1)試利用上述基本事實,解方程2x2﹣x=0;
(2)若(x2+y2)(x2+y2﹣1)﹣2=0,求x2+y2的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,Rt△ABC中,∠ACB=90°,D為AB中點,DE、DF分別交AC于E,交BC于F,且DE⊥DF.
(1)如果CA=CB,求證:AE2+BF2=EF2;
(2)如圖2,如果CA<CB,(1)中結(jié)論還能成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中生在數(shù)學(xué)運算中使用計算器的現(xiàn)象越來越普遍,某校一興趣小組隨機抽查了本校若干名學(xué)生使用計算器的情況.以下是根據(jù)抽查結(jié)果繪制出的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
請根據(jù)上述統(tǒng)計圖提供的信息,完成下列問題:
(1)這次抽查的樣本容量是;
(2)請補全上述條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)若從這次接受調(diào)查的學(xué)生中,隨機抽查一名學(xué)生恰好是“不常用”計算器的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分線,OM是∠BOC的平分線.
(1)求∠MON的大小.
(2)當銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,點O是對角線AC的中點,點P是線段AO上(不與A、O重合)的一個動點,過點P作PE⊥PB且交邊CD于點E.
(1)求證:PB=PE;
(2)過點E作EF⊥AC于點F,如圖2,若正方形ABCD的邊長為2,則在點P運動的過程中,PF的長度是否發(fā)生變化?若不變,請直接寫出這個不變的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是AB中點,聯(lián)結(jié)CD.
(1)若AB=10且∠ACD=∠B,求AC的長.
(2)過D點作BC的平行線交AC于點E,設(shè) = , = ,請用向量 、 表示 和 (直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】應(yīng)用探究題 在圖①中,已知長方形的長和寬分別為a,b,將線段A1A2向右平移1個單位長度到B1B2的位置,得到封閉圖形A1A2B2B1(即陰影部分).
在圖②中,將折線A1A2A3向右平移1個單位長度到折線B1B2B3的位置,得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖③中,請你畫一條類似的有兩個折點的折線,同樣向右平移1個單位長度,從而得到一個封閉圖形,并用陰影表示;
(2)請你分別寫出前三個圖形中除去陰影部分后剩余部分的面積:S1,S2,S3;
(3)聯(lián)想與探索:
如圖④,在一塊長方形草地上,草地的長和寬仍分別為a,b,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位長度),請你猜想空白部分表示的草地面積是多少,并說明你的猜想是正確的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實現(xiàn)目標?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西綿山是中國歷史文化名山,因春秋時期晉國介子推攜母隱居于此被焚而著稱,如圖1,是綿山上介子推母子的塑像,某游客計劃測量這座塑像的高度,由于游客無法直接到達塑像底部,因此該游客計劃借助坡面高度來測量塑像的高度;如圖2,在塑像旁山坡坡腳A處測得塑像頭頂C的仰角為75°,當從A處沿坡面行走10米到達P處時,測得塑像頭頂C的仰角剛好為45°,已知山坡的坡度i=1:3,且O,A,B在同一直線上,求塑像的高度.(側(cè)傾器高度忽略不計,結(jié)果精確到0.1米,參考數(shù)據(jù):cos75°≈0.3,tan75°≈3.7, ≈1.4, ≈1.7, ≈3.2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com