【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+m過點A(5,—2)且分別與x軸、y軸交于點B、C,過點A畫AD//x軸,交y軸于點D.
(1)求點B、C的坐標(biāo);
(2)在線段AD上存在點P,使BP+ CP最小,求點P的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線經(jīng)過原點和點,點的坐標(biāo)為.
(1)求直線所對應(yīng)的函數(shù)解析式;
(2)當(dāng)P在線段OA上時,設(shè)點橫坐標(biāo)為,三角形的面積為,寫出關(guān)于的函數(shù)解析式,并指出自變量的取值范圍;
(3)當(dāng)P在射線OA上時,在坐標(biāo)軸上有一點,使(正整數(shù)),請直接寫出點的坐標(biāo)(本小題只要寫出結(jié)果,不需要寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PB丄x軸于點B,點A與點B關(guān)于y軸對稱.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)求證:點C為線段AP的中點;
(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形,如果存在,說明理由并求出點D的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時,他應(yīng)付多少元的上網(wǎng)費用?
(3)若小李5月份上網(wǎng)費用為75元,則他在該月份的上網(wǎng)時間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)當(dāng)m___________時,已知方程為一元一次方程;
(2)當(dāng)m___________時,已知方程為一元二次方程;
(3)若已知方程有實數(shù)根,求m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,AE=AF,BE與CF交于點D,則對于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。
A. ① B. ② C. ①和② D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由. |
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點E作EF∥BC,交AC于點F.
(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行“校園好聲音”歌手大賽,初、高中部根據(jù)初賽成績,各選出名選手組成初中代表隊和高中代表隊參加學(xué)校決賽.每個隊名選手的決賽成績?nèi)鐖D所示:
填表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中代表隊 | |||
高中代表隊 |
結(jié)合兩隊決賽成績的平均數(shù)和中位數(shù),分析哪個代表隊的成績較好;
計算兩隊決賽成績的方差,并判斷哪個代表隊的成績較為穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com