【題目】核潛艇作為“三位一體”核打擊力量中的一種,對于一個國家來說,是水下核威懾的重要戰(zhàn)略武器.我國的核潛艇發(fā)展迅速,多次出色完成了戰(zhàn)略巡航任務(wù).一次,某型號核潛艇在水下400米的處以600米/分鐘的速度向正東方向航行時,發(fā)現(xiàn)斜上方仰角為水面上處有一可疑船只正沿著相同航向航行,跟蹤2分鐘后到達(dá)處,再次測得可疑船只在仰角為的處,請根據(jù)以上條件求出可疑船只航行的速度.(參考數(shù)據(jù):,,,)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每個人都應(yīng)懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護(hù)我們生活的美好世界.某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計量不會發(fā)生改變的是( 。
用水量x(噸) | 3 | 4 | 5 | 6 | 7 |
頻數(shù) | 1 | 2 | 5 | 4﹣x | x |
A. 平均數(shù)、中位數(shù) B. 眾數(shù)、中位數(shù) C. 平均數(shù)、方差 D. 眾數(shù)、方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在以AB為直徑的⊙O上,BD與過點C的切線垂直于點D,BD與⊙O交于點E.
(1)求證:BC平分∠DBA;
(2)連接AE和AC,若cos∠ABD=,OA=m,請寫出求四邊形AEDC面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ADBC內(nèi)接于⊙O,AB為⊙O的直徑,對角線AB、CD相交于點E.
(1)求證:∠BCD+∠ABD=90°;
(2)點G在AC的延長線上,連接BG,交⊙O于點Q,CA=CB,∠ABD=∠ABG,作GH⊥CD,交DC的延長線于點H,求證:GQ=GH.
(3)在(2)的條件下,過點B作BF∥AD,交CD于點F,GH=3CH,若CF=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線l經(jīng)過點A(﹣2,0)和點B(0,1),點M在x軸上,過點M作x軸的垂線交直線l于點C,若OM=2OA,則經(jīng)過點C的反比例函數(shù)表達(dá)式為( 。
A.y=B.y=C.y=D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某建設(shè)工地一個工程有大量的沙石需要運輸.建設(shè)公司車隊有載重量為8噸和10噸的卡車共14輛,全部車輛一次能運輸128噸沙石.
(1)求建設(shè)公司車隊載重量為8噸和10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,車隊需要一次運輸沙石超過190噸,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共7輛,車隊最多新購買載重量為8噸的卡車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,學(xué)校德育處隨機抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
成績x(分)分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
頻數(shù)分布直方圖
根據(jù)所給的信息,回答下列問題:
(1)m=________;n=________;
(2)補全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在________分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的2000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,AB=AC,AD為BC邊上的高,E為AC中點.
(1)如圖1,過點C作CF⊥AB于F點,連接EF.若∠BAD=20°,求∠AFE的度數(shù);
(2)若M為線段BD上的動點(點M與點D不重合),過點C作CN⊥AM于N點,射線EN,AB交于P點.
①依題意將圖2補全;
②小宇通過觀察、實驗,提出猜想:在點M運動的過程中,始終有∠APE=2∠MAD.
小宇把這個猜想與同學(xué)們進(jìn)行討論,形成了證明該猜想的幾種想法:
想法1:連接DE,要證∠APE=2∠MAD,只需證∠PED=2∠MAD.
想法2:設(shè)∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通過角度計算得∠APE=2α.
想法3:在NE上取點Q,使∠NAQ=2∠MAD,要證∠APE=2∠MAD,只需證△NAQ∽△APQ.……
請你參考上面的想法,幫助小宇證明∠APE =2∠MAD.(一種方法即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com