【題目】某商店分兩次購進兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:

購進數(shù)量(件)

購進所需費用

(元)

A

B

第一次

20

50

4100

第二次

30

40

3700

1)求、兩種商品每件的進價分別是多少元?

2)商場決定商品以每件50元出售,商品以每件元出售.為滿足市場需求,需購進兩種商品共件,且商品的數(shù)量不少于商品數(shù)量的倍,請你求出獲利最大的進貨方案,并確定最大利潤.

【答案】1A商品每件進價為30元,B商品每件進價為70元;(2)當A商品購進800件,B商品購進200件時利潤最大,最大利潤為22000

【解析】

1)設A、B兩種商品每件的進價分別是x元,y元,根據題意可列二元一次方程組,解得可求AB兩種商品每件的進價.
2)設購進A種商品m件,獲得的利潤為w元,則購進B種商品(1000-m)件,由A種商品的數(shù)量不少于B種商品數(shù)量的4倍,即可得出關于m的一元一次不等式,解之即可得出m的取值范圍,根據利潤=A商品利潤+B商品利潤列出wm之間的函數(shù)關系式,再根據一次函數(shù)的性質即可解決最值問題.

1)設A商品每件進價為x元,B商品每件進價為y元,根據題意得:

解得:

答:A商品每件進價為30元,B商品每件進價為70

2)設A商品購進m件,則B商品購進(1000-m).設獲得利潤為W.

m增大時,W減少

m=800時,W取最大值

最大利潤為:(元)

A商品購進800件,B商品購進200件時利潤最大,最大利潤為22000.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(教材呈現(xiàn))

下圖是華師版九年級上冊數(shù)學教材第79頁的部分內容.

請根據教材內容,結合圖,寫出完整的解題過程.

(結論應用)

1)在圖中,若AB=2,∠AOD=120°,則四邊形EFGH的面積為______

2)如圖,在菱形ABCD中,∠BAD=120°,O是其內任意一點,連接O與菱形ABCD各頂點,四邊形EFGH的頂點EF、GH分別在AO、BOCO、DO上,EO=2AE,EFABGH,且EF=GH,若△EFO與△GHO的面積和為,則菱形ABCD的周長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,A21),B3,﹣1),C(﹣2,1),D0,2).已知線段AB繞著點P逆時針旋轉得到線段CD,其中C是點A的對應點.

1)用尺規(guī)作圖的方法確定旋轉中心P,并直接寫出點P的坐標;(要求保留作圖痕跡,不寫作法)

2)若以P為圓心的圓與直線CD相切,求⊙P的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與直線交于A、B兩點.A的橫坐標為-3,點By軸上,點Py軸左側拋物線上的一動點,橫坐標為m,過點PPCx軸于C,交直線ABD.

1)求拋物線的解析式;

2)當m為何值時,

3)是否存在點P,使PAD是直角三角形,若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=x交于點M,∠AMB=90°,其兩邊分別與兩坐標軸的正半軸交于點A,B,四邊形OAMB的面積為6.

(1)求k的值;

(2)點P在反比例函數(shù)y=(x>0)的圖象上,若點P的橫坐標為3,∠EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點E,F(xiàn),問是否存在點E,使得PE=PF?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經過點,交y 軸于點C

1)求拋物線的頂點坐標.

2)點為拋物線上一點,是否存在點使,若存在請直接給出點坐標;若不存在請說明理由.

3)將直線繞點順時針旋轉,與拋物線交于另一點,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標系中,點B,F的坐標分別為(4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點P(PGC)是位似中心,則點P的坐標為(  )

A. (0,3)

B. (0,2.5)

C. (0,2)

D. (0,1.5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為坐標原點,的邊垂直于軸,垂足為點,反比例函數(shù)的圖象經過的中點,且與相交于點

1)求反比例函數(shù)的解析式;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B0,2),A(﹣6,﹣1)在反比例函數(shù)的圖象上,作射線AB,再將射線AB繞點A逆時針旋轉45°后,交反比例函數(shù)圖象于點C,則點C的坐標為_____

查看答案和解析>>

同步練習冊答案