【題目】閱讀理解:

如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問題:

1)如圖1A=B=DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;

2)如圖2,在矩形ABCD中,AB=5BC=2,且AB,CD四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;

拓展探究:

3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究ABBC的數(shù)量關(guān)系.

【答案】解:(1)點(diǎn)E是四邊形ABCD的邊AB上的相似點(diǎn)。理由如下:

∵∠A=55°,∴∠ADE+DEA=125°。

∵∠DEC=55°∴∠BEC+DEA=125°。

∴∠ADE=BEC

∵∠A=B,∴△ADE∽△BEC。

點(diǎn)E是四邊形ABCDAB邊上的相似點(diǎn)。

2)作圖如下:

3點(diǎn)E是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),

∴△AEM∽△BCE∽△ECM∴∠BCE=ECM=AEM。

由折疊可知:ECM≌△DCM∴∠ECM=DCM,CE=CD。

∴∠BCE=BCD=30°。BE=CE=AB

RtBCE中,

,。

【解析】

試題1)要證明點(diǎn)E是四邊形ABCDAB邊上的相似點(diǎn),只要證明有一組三角形相似就行,很容易證明ADE∽△BEC,所以問題得解

2)根據(jù)兩個(gè)直角三角形相似得到強(qiáng)相似點(diǎn)的兩種情況即可。

3)因?yàn)辄c(diǎn)E是梯形ABCDAB邊上的一個(gè)強(qiáng)相似點(diǎn),所以就有相似三角形出現(xiàn),根據(jù)相似三角形的對(duì)應(yīng)線段成比例,可以判斷出AEBE的數(shù)量關(guān)系,從而可求出解。 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題呈現(xiàn)

如圖1,在邊長(zhǎng)為1的正方形網(wǎng)格中,連接格點(diǎn)、、相交于點(diǎn),求的值.

方法歸納

求一個(gè)銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個(gè)直角三角形.觀察發(fā)現(xiàn)問題中不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題.比如連接格點(diǎn)、,可得,則,連接,那么就變換到中.

問題解決

(1)直接寫出圖1的值為_________;

(2)如圖2,在邊長(zhǎng)為1的正方形網(wǎng)格中,相交于點(diǎn),求的值;

思維拓展

(3)如圖3,,,點(diǎn)上,且,延長(zhǎng),使,連接的延長(zhǎng)線于點(diǎn),用上述方法構(gòu)造網(wǎng)格求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海洋服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)300元,領(lǐng)帶每條定價(jià)40廠方在開展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方案:買一套西裝送一條領(lǐng)帶;西裝和領(lǐng)帶定價(jià)打9折付款.現(xiàn)有某客戶要到該服裝廠購(gòu)買西裝50套,領(lǐng)帶x

1)若該客戶分別按兩種優(yōu)惠方案購(gòu)買,需付款各多少元用含x的式子表示

2)若該客戶購(gòu)買西裝50套,領(lǐng)帶60條,請(qǐng)通過計(jì)算說明按哪種方案購(gòu)買較為合算.

3)請(qǐng)通過計(jì)算說明什么情況下客戶分別選擇方案購(gòu)買較為合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 A(3,0)B(0,4)、P(40),AB5,M、N兩點(diǎn)分別在線段 ABy軸上,則 PNMN的最小值為(

A.4B.C.D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間的連線為邊的三角形稱為格點(diǎn)三角形,圖中的ABC是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(-1-1).

(1)ABC向左平移8格后得到A1B1C1,畫出A1B1C1的圖形并寫出點(diǎn)B1的坐標(biāo);

(2)ABC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)90°后得A2B2C2,畫出A2B2C2的圖形并寫出B2的坐標(biāo);

(3)ABC以點(diǎn)A為位似中心放大,使放大前后對(duì)應(yīng)邊的比為12,畫出AB3C3的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

小明準(zhǔn)備制作棱長(zhǎng)為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進(jìn)行如下設(shè)計(jì):

說明:方案一圖形中的圓過點(diǎn)A,B,C,圓心O也是正方形的頂點(diǎn);

回答問題(直接寫出結(jié)果):

(1)方案二中,直角三角形紙片的兩條直角邊長(zhǎng)分別為_______cm和_______cm;

(2)小明通過計(jì)算,發(fā)現(xiàn)方案一中紙片的利用率是________(填準(zhǔn)確值),近似值約為38.2%.相比之下,方案二的利用率是________%.小明感覺上面兩個(gè)方案的利用率均偏低,又進(jìn)行了新的設(shè)計(jì)(方案三),請(qǐng)直接寫出方案三的利用率是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線與拋物線關(guān)于y軸對(duì)稱, 拋物線與x軸分別交于點(diǎn)A(-3, 0), B(m, 0), 頂點(diǎn)為M.

(1)求b和m的值;

(2)求拋物線的解析式;

(3)在x軸, y軸上分別有點(diǎn)P(t, 0), Q(0, -2t), 其中t>0, 當(dāng)線段PQ與拋物線有且只有一個(gè)公共點(diǎn)時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上的點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)到點(diǎn)、點(diǎn)的距離相等,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(大于秒.

(1)點(diǎn)表示的數(shù)是______

(2)求當(dāng)等于多少秒時(shí),點(diǎn)到達(dá)點(diǎn)處?

(3)點(diǎn)表示的數(shù)是______(用含字母的式子表示)

(4)求當(dāng)等于多少秒時(shí),、之間的距離為個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)市場(chǎng)新進(jìn)一批水果,有蘋果、西瓜、桃子和香蕉四個(gè)品種,統(tǒng)計(jì)后將結(jié)果繪制成條形圖(如圖),已知西瓜的重量占這批水果總重量的40%

回答下列問題:

1)這批水果總重量為 kg;

2)請(qǐng)將條形圖補(bǔ)充完整;

3)若用扇形圖表示統(tǒng)計(jì)結(jié)果,則桃子所對(duì)應(yīng)扇形的圓心角為 度.

查看答案和解析>>

同步練習(xí)冊(cè)答案