【題目】如圖所示,已知函數(shù)y=ax2(a≠0)的圖象上的點D,C與x軸上的點A(-5,0)和B(3,0)構(gòu)成ABCD,DC與y軸的交點為E(0,6),試求a的值.

【答案】

【解析】

A(-5,0)和B(3,0)得出AB=8,進一步得出CD=AB=8,所以D點的橫坐標(biāo)為-4,再結(jié)合E(0,6),得出點D的縱坐標(biāo)為6,代入D點坐標(biāo)求得a的數(shù)值即可.

解:∵點A(-5,0)B(3,0),

AB=8.

∵四邊形ABCD是平行四邊形,

CD=8,CDAB.

又∵ABy軸,拋物線yax2的對稱軸為y軸,∴CDy軸,

DECD=4,點DC,E的縱坐標(biāo)相同.

又∵點E的坐標(biāo)為(0,6),

∴點D的坐標(biāo)為(-4,6).

D(-4,6)代入yax2

解得a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計算:

喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?

當(dāng)=5時,y=45.求k的值.

(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則BCG的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知函數(shù)y=ax2(a≠0)的圖象上的點D,C與x軸上的點A(-5,0)和B(3,0)構(gòu)成ABCD,DC與y軸的交點為E(0,6),試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:我們知道:點AB在數(shù)軸上分別表示有理數(shù)a、b,AB兩點之間的距離表示為AB,在數(shù)軸上AB兩點之間的距離AB=|a-b|.所以式子|x3|的幾何意義是數(shù)軸上表示有理數(shù)3的點與表示有理數(shù)x的點之間的距離.

根據(jù)上述材料,解答下列問題:

1)若|x3|=4,則x=______;

2)式子|x3|=|x+1|,則x=______

3)若|x3|+|x+1|=9,借助數(shù)軸求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用圖象解一元二次方程x2-2x-1=0時,我們采用的一種方法是在直角坐標(biāo)系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點的橫坐標(biāo)就是該方程的解.

(1)請再給出一種利用圖象求方程x2-2x-1=0的解的方法;

(2)已知函數(shù)y=x3的圖象(如圖),求方程x3-x-2=0的解(結(jié)果保留兩位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊AB、BCCA長分別為40、5060.其三條角平分線交于點O,則SABOSBCOSCAO=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊的邊長為,是邊上的動點,交邊于點,在邊上取一點,使,連接

(1)請直接寫出圖中與線段相等的兩條線段;(不再另外添加輔助線)

(2)探究:當(dāng)點在什么位置時,四邊形是平行四邊形?并判斷四邊形是什么特殊的平行四邊形,請說明理由;

(3)在(2)的條件下,以點為圓心,為半徑作圓,根據(jù)與平行四邊形四條邊交點的總個數(shù),求相應(yīng)的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司計劃購買A型和B型兩種貨車共8輛,其中每輛車的價格以及每輛車的運載量如下表:

A

B

價格(萬元/臺)

m

n

運載量(噸/車)

20

30

若購買A型貨車1輛,B型貨車3輛,共需67萬元;若購買A型貨車3輛,B型貨車2輛,共需75萬元.

1)求m,n的值;

2)若每輛A型貨車每月運載量500噸,每輛B型貨車每月運載量750噸,為確保這8輛車每月的運載量總和不少于4750噸,且該公司購買A型和B型貨車的總費用不超過124萬元.請你設(shè)計一個方案,使得購車總費用最少.

查看答案和解析>>

同步練習(xí)冊答案