【題目】如圖,AB為⊙O的直徑,CD為圓上的兩點,OCBD,弦AD、BC相交于點E

1)求證:

2)若CE=1,BE=3,求⊙O的半徑.

【答案】1)見解析;(2)⊙O的半徑為

【解析】

(1)由等腰三角形的性質(zhì)和平行線的性質(zhì)可得∠OBC=∠CBD,即可證;
(2)通過證明△ACE∽△BCA,可得,可得AC=2,由勾股定理可求AB的長,即可求⊙O的半徑;

1)證明:連接OD.OCBD,∴∠OCB=DBC,∵OB=OC,∴∠OCB=OBC

∴∠OBC=DBC,∴∠AOC=COD,∴

2)連接AC,∵,∴∠CBA=CAD.∵∠BCA=ACE,∴△CBA∽△CAE

,∴,∴CA=2

AB為⊙O的直徑,∴∠ACB=90°,在RtABC中,由勾股定理得:.∴r=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)疫情期間為了切實抓好停課不停學(xué)活動,借助某軟件平臺隨機(jī)抽取了該校部分學(xué)生的在線學(xué)習(xí)時間,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)以上信息回答下列問題

1)本次調(diào)查的人數(shù)為   學(xué)習(xí)時間為7小時的所對的圓心角為 ;

2)補(bǔ)全頻數(shù)分布直方圖;

3)若全校共有學(xué)生1800人,估計有多少學(xué)生在線學(xué)習(xí)時間不低于8個小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計圖中,m=   ,n=   

(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視經(jīng)典詠流傳開播以來受到社會廣泛關(guān)注,我市也在各個學(xué)校開展了傳承經(jīng)典的相關(guān)主題活動戲曲進(jìn)校園.某校對此項活動的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對收集的信息進(jìn)行統(tǒng)計,繪制了下面兩副尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖所提供的信息解答下列問題:

圖中A表示很喜歡,B表示喜歡,C表示一般,D表示不喜歡

1)被調(diào)查的總?cè)藬?shù)是   人,扇形統(tǒng)計圖中B部分所對應(yīng)的扇形圓心角的度數(shù)為   ,并補(bǔ)全條形統(tǒng)計圖;

2)若該校共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果估計該校學(xué)生中A類有多少人;

3)在A5人中,剛好有3個女生2個男生,從中隨機(jī)抽取兩個同學(xué)擔(dān)任兩角色,用樹狀圖或列表法求出被抽到的兩個學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓錐的軸截面是邊長為6cm的正三角形ABCP是母線AC的中點.則在圓錐的側(cè)面上從B點到P點的最短路線的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖像過面積等于8的長方形的對角線的中點,為函數(shù)圖像上任意一點.則的最小值為(

A.1B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在C處看到西北方向上有一涼亭A,北偏東°的方向上有一棵大樹B,已知涼亭A在大樹B的正西方向,若BC=米,則AB兩點相距 ( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)C1y1ax2+2ax+a-1a≠0).

1)把二次函數(shù)C1的表達(dá)式化成yax-h2+ba≠0)的形式 ,并寫出頂點坐標(biāo)

2)已知二次函數(shù)C1的圖象經(jīng)過點A(-3,1)

a的值 ;

②點B在二次函數(shù)C1的圖象上,點AB關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2y2kx2+kxk≠0)的圖象,與線段AB只有一個交點,則k的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖像經(jīng)過點A(4,4),B(5,0)和原點O,點P為拋物線上的一個動點,過點Px軸的垂線,垂足為D(m0)(m>0),并與直線OA交于點C

(1)求出拋物線的函數(shù)表達(dá)式;

(2)連接OP,當(dāng)SOPCSOCD時,求出此時的點P坐標(biāo);

(3)在直線OA上取一點M,使得以P、CM為頂點的三角形與△OCD全等,求出點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案