【題目】在平面直角坐標系中,直線y=﹣x+2x軸交于點B,與y軸交于點C,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過B,C兩點,且與x軸的負半軸交于點A.

(1)求二次函數(shù)的表達式;

(2)如圖1,點D是拋物線第四象限上的一動點,連接DC,DB,當(dāng)SDCB=SABC時,求點D坐標;

(3)如圖2,在(2)的條件下,點QCA的延長線上,連接DQ,AD,過點QQPy軸,交拋物線于P,若∠AQD=ACO+ADC,請求出PQ的長.

【答案】(1);(2);(3)6

【解析】

1)先求出B、C的坐標,然后代入二次函數(shù)的解析式,解方程組即可;

(2)DDGx軸于G,CCFDGFBBECFE設(shè)Dx,y),x>0,y<0.求出SABC根據(jù)SCBD=SCDFSCEBS梯形EBDF解方程解得到x的值,從而得到D的坐標;

(3)連接AD,DDMx軸于M先求出直線CD的解析式為y=-x+2,得到CO=OR=2,則∠ORC=45°.再證明∠AQD=45°.通過勾股定理的逆定理得到AC2+AD2= DC2即有∠CAD=90°,從而有△AQD是等腰直角三角形,由等腰三角形的性質(zhì)得到AQ=AD通過證明△QAN≌△ADM,得到NAQN的長,進而得到ON=4,即可得到N(-4,0),P點橫坐標為x=-4,代入二次函數(shù)即可得到y的值,從而得到結(jié)論.

1)在中,令y=0,解得:x=4,∴B(4,0),令x=0,得:y=2,∴C(0,2).把B(4,0),C(02)代入中,得:,解得:,∴二次函數(shù)的表達式為:

(2)DDGx軸于G,CCFDGF,BBECFE設(shè)Dx,y).

D在第四象限,∴x>0,y<0.

B(4,0),C(0,2),∴CE=OB=4,CO=BE=FG=2,EF=BG=x-4,DF=DG+FG=2-ySABC=AB×OC=×(4+1)×2=5.

SCBD=SCDFSCEBS梯形EBDF=,化簡得x+2y=-1.

Dx,y)在二次函數(shù),∴,化簡得,∴(x-5)(x+1)=0,∴x=5x=-1(舍去)

當(dāng)x=5,y==-3,∴D(5,-3).

(3)如圖,連接AD,DDMx軸于M設(shè)直線CD的解析式為y=kx+bC(0,2),D(5,-3)代入得到,解得,∴直線CD的解析式為y=-x+2,y=0,解得x=2,∴R(2,0),∴CO=OR=2,∴∠ORC=45°.

∵∠ACO+∠CAO=90°,∠CAO+∠OAD=90°,∴∠ACO=∠OAD,∴∠ACO+∠ADC=∠OAD+∠ADC=∠ARC=45°,∴∠AQD=45°.

AC2=12+22=5,AD2=(5+1)2+32=45,DC2=52+(2+3)2=50,∴AC2+AD2=5+45=50= DC2,∴∠CAD=90°,∴∠QAD=90°.

∵∠AQD=45°,∴△AQD是等腰直角三角形,∴AQ=AD

∵∠QAD=90°,∴∠NAQ+∠DAM=90°.

∵∠NAQ+∠AQN=90°,∴∠AQN=∠MAD在△QAN和△ADM中,∵AQN=∠MAD,∠QNA=∠AMD=90°,AQ=AD,∴△QAN≌△ADM,∴NA=DM=3,QN=AM=6,∴ON=4,∴N(-4,0).設(shè)Px,y).

QPy軸,∴P點橫坐標為x=-4,∴y==-12,∴PN=12,∴PQ=PN-QN=126=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CD為弦,且CDAB,垂足為H.

(1)若∠BAC=30°,求證:CD平分OB.

(2)若點E為弧ADB的中點,連接0E,CE.求證:CE平分∠OCD.

(3)若⊙O的半徑為4,BAC=30°,則圓周上到直線AC距離為3的點有多少個?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖中,是木桿和旗桿豎在操場上,其中木桿在陽光下的影子已畫出.

(1)用線段表示這一時刻旗桿在陽光下的影子.

(2)比較旗桿與木桿影子的長短.

(3)圖中是否出現(xiàn)了相似三角形?

(4)為了出現(xiàn)這樣的相似三角形,木桿不可以放在圖中的哪些位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=ax2+bx+3經(jīng)過點A(3,0)和點B(4,3).

(1)求這條拋物線所對應(yīng)的二次函數(shù)的表達式.

(2)直接寫出該拋物線開口方向和頂點坐標.

(3)直接在所給坐標平面內(nèi)畫出這條拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,點OABD的外心,點C為直徑BD下方弧BCD上一點,且不與點B,D重合,∠ACB=ABD=45°,則下列對AC,BC,CD之間的數(shù)量關(guān)系判斷正確的是(

A. AC=BC+CD B. AC=BC+CD C. AC=BC+CD D. 2AC=BC+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店從廠家選購甲、乙兩種商品,乙商品每件進價比甲商品每件進價少20元,若購進甲商品5件和乙商品4件共需要1000元;

(1)求甲、乙兩種商品每件的進價分別是多少元?

(2)若甲種商品的售價為每件145元,乙種商品的售價為每件120元,該商店準備購進甲、乙兩種商品共40件,且這兩種商品全部售出后總利潤不少于870元,則甲種商品至少可購進多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游商店8月份營業(yè)額為15萬元,9月份下降了20%.受“十一”黃金周以及經(jīng)濟利好因素的影響,10月份、11月份營業(yè)額均比上一個月有所增長,10月份增長率是11月份增長率的1.5倍,已知該旅游商店11月份營業(yè)額為24萬元.

(1)問:9月份的營業(yè)額是多少萬元?

(2)求10月份營業(yè)額的增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園平行于墻的一邊長為x(m),花園的面積為y(m2).

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)滿足條件的花園面積能達到200m2嗎?若能,求出此時x的值,若不能,說明理由;

(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,花園的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=4,點E是邊BC上一動點,把DCE沿DE折疊得DFE,射線DF交直線CB于點P,當(dāng)AFD為等腰三角形時,DP的長為_____

查看答案和解析>>

同步練習(xí)冊答案