【題目】問(wèn)題背景:如圖1:在四邊形ABCD,AB=AD,BAD=120 ,B=ADC=90°.EF分別是 BC,CD 上的點(diǎn)。且∠EAF=60° . 探究圖中線段BE,EF,FD 之間的數(shù)量關(guān)系。 小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng) FD 到點(diǎn) G,使 DG=BE,連結(jié) AG,先證明ABE≌△ADG, 再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_________;

探索延伸:如圖2,若四邊形ABCD,AB=AD,B+D=180° .E,F 分別是 BC,CD 上的點(diǎn),且∠EAF=BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;

實(shí)際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A,艦艇乙在指揮中心南偏東 70°B,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以55 海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東 50°的方向以 75 海里/小時(shí)的速度前進(jìn)2小時(shí)后, 指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá) E,F ,且兩艦艇之間的夾角為70° ,試求此時(shí)兩艦 艇之間的距離。

【答案】問(wèn)題背景:EF=BE+DF,理由見解析;探索延伸:結(jié)論仍然成立,理由見解析;實(shí)際應(yīng)用:210海里.

【解析】

問(wèn)題背景:延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;

探索延伸:延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;

實(shí)際應(yīng)用:連接EF,延長(zhǎng)AE、BF相交于點(diǎn)C,然后與(2)同理可證.

問(wèn)題背景:EF=BE+DF,證明如下:

在△ABE和△ADG中,

,

∴△ABE≌△ADGSAS),

AE=AG,∠BAE=DAG,

∵∠EAF=BAD,

∴∠GAF=DAG+DAF=BAE+DAF=BAD-EAF=EAF,

∴∠EAF=GAF

在△AEF和△GAF中,

,

∴△AEF≌△AGFSAS),

EF=FG,

FG=DG+DF=BE+DF,

EF=BE+DF,

故答案為: EF=BE+DF;

探索延伸:結(jié)論EF=BE+DF仍然成立,

理由:延長(zhǎng)FD到點(diǎn)G.使DG=BE,連結(jié)AG,如圖2,

在△ABE和△ADG中,,

∴△ABE≌△ADGSAS),

AE=AG,∠BAE=DAG,

∵∠EAF=BAD,

∴∠GAF=DAG+DAF=BAE+DAF=BAD-EAF=EAF

∴∠EAF=GAF,

在△AEF和△GAF中,

,

∴△AEF≌△AGFSAS),

EF=FG

FG=DG+DF=BE+DF,

EF=BE+DF;

實(shí)際應(yīng)用:如圖3,連接EF,延長(zhǎng)AE、BF相交于點(diǎn)C,

∵∠AOB=30°+90°+90°-70°)=140°,∠EOF=70°,

∴∠EOF=AOB,

又∵OA=OB,∠OAC+OBC=90°-30°)+70°+50°)=180°,

∴符合探索延伸中的條件,

∴結(jié)論EF=AE+BF成立,

EF=2×(45+60=210(海里),

答:此時(shí)兩艦艇之間的距離是210海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是將菱形ABCD以點(diǎn)O為中心按順時(shí)針?lè)较蚍謩e旋轉(zhuǎn)90°,180°,270°后形成的圖形.若BAD=60°,AB=2,則圖中陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知ABCD,點(diǎn)E、F分別是AB、CD上的點(diǎn),點(diǎn)P是兩平行線之間的一點(diǎn),設(shè)∠AEP=α,PFC=β,在圖①中,過(guò)點(diǎn)E作射線EHCD于點(diǎn)N,作射線FI,延長(zhǎng)PFG,使得PE、FG分別平分∠AEH、DFl,得到圖②

(1)在圖①中,過(guò)點(diǎn)PPMAB,當(dāng)α=20°,β=50°時(shí),∠EPM=   度,∠EPF=   度;

(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);

(3)在圖②中,當(dāng)FIEH時(shí),請(qǐng)直接寫出αβ的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊的頂點(diǎn)分別在等邊各邊上,且,若,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).

(1)請(qǐng)?jiān)趫D中,畫出ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;

(2)以點(diǎn)O為位似中心,將ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,OABC的邊OCy軸的正半軸上,,,反比例函數(shù)的圖象經(jīng)過(guò)的B

求點(diǎn)B的坐標(biāo)和反比例函數(shù)的關(guān)系式;

如圖2,直線MN分別與x軸、y軸的正半軸交于MN兩點(diǎn),若點(diǎn)O和點(diǎn)B關(guān)于直線MN成軸對(duì)稱,求線段ON的長(zhǎng);

如圖3,將線段OA延長(zhǎng)交的圖象于點(diǎn)D,過(guò)B,D的直線分別交x軸、y軸于EF兩點(diǎn),請(qǐng)?zhí)骄烤段EDBF的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0 (a≠0)有兩個(gè)不相等的實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2,那么稱這樣的方程為倍根方程”.例如,方程x2-6x+8=0的兩個(gè)根是24,則方程x2-6x+8=0就是倍根方程”.

(1)若一元二次方程x2-3x+c=0倍根方程”,c=

(2)(x-2) (mx-n)=0(m≠0)倍根方程”,求代數(shù)式4m2-5mn+n2的值;

(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相異兩點(diǎn)M(1+t,s),N(4-t,s),都在拋物線y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過(guò)點(diǎn)A(1,);點(diǎn)F(0,1)在y軸上.直線y=﹣1y軸交于點(diǎn)H.

(1)求二次函數(shù)的解析式;

(2)點(diǎn)P是(1)中圖象上的點(diǎn),過(guò)點(diǎn)Px軸的垂線與直線y=﹣1交于點(diǎn)M.

求證:PFM為等腰三角形;

(3)作PQFM于點(diǎn)Q,當(dāng)點(diǎn)P從橫坐標(biāo)2013處運(yùn)動(dòng)到橫坐標(biāo)2017處時(shí),請(qǐng)求出點(diǎn)Q運(yùn)動(dòng)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點(diǎn)D,那么DAC的度數(shù)為(  )

A. 90° B. 80° C. 70° D. 60°

查看答案和解析>>

同步練習(xí)冊(cè)答案