【題目】 (1)、如圖,AC平分∠DAB,∠1=∠2,試說(shuō)明AB與CD的位置關(guān)系,并予以證明;
(2)如圖,在(1)的條件下,AB的下方兩點(diǎn)E,F滿足:BF平分∠ABE,CF 平分∠DCE,若∠CFB=20°,∠DCE=70°,求∠ABE的度數(shù)
(3)在前面的條件下,若P是BE上一點(diǎn);G是CD上任一點(diǎn),PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列結(jié)論:①∠DGP﹣∠MGN的值不變;②∠MGN 的度數(shù)不變.可以證明,只有一個(gè)是正確的,請(qǐng)你作出正確的選擇并求值.
【答案】(1)、AB∥CD;理由見(jiàn)解析;(2)、30°;(3)、①∠DGP﹣∠MGN的值隨∠DGP的變化而變化;②∠MGN的度數(shù)為15°不變;證明過(guò)程見(jiàn)解析.
【解析】
試題分析:(1)、根據(jù)角平分線得出∠1=∠CAB,從而得出∠2=∠CAB,從而說(shuō)明平行線;(2)、根據(jù)角平分線的性質(zhì)得出∠DCF=∠DCE=35°,∠ABE=2∠ABF,根據(jù)CD∥AB得出∠2=∠DCF=35°,根據(jù)∠2=∠CFB+∠ABF,∠CFB=20°得出∠ABF和∠ABE的度數(shù);(3)、根據(jù)三角形外角性質(zhì)得出∠1=∠BPG+∠B,根據(jù)角平分線的性質(zhì)得出∠GPQ=∠BPG,∠MGP=∠DGP,根據(jù)AB∥CD得出∠MGP=(∠BPG+∠B),根據(jù)PQ∥GN得出∠NGP=∠GPQ=∠BPG,從而根據(jù)∠MGN=∠MGP﹣∠NGP=∠B,從而得出答案.
試題解析:(1)、AB∥CD.
∵AC平分∠DAB, ∴∠1=∠CAB, ∵∠1=∠2, ∴∠2=∠CAB, ∴AB∥CD;
(2)、如圖2, ∵BF平分∠ABE,CF平分∠CDE, ∴∠DCF=∠DCE=35°,∠ABE=2∠ABF, ∵CD∥AB,
∴∠2=∠DCF=35°, ∵∠2=∠CFB+∠ABF,∠CFB=20°, ∴∠ABF=15°, ∴∠ABE=2∠ABF=30°
(3)、如圖3,根據(jù)三角形的外角性質(zhì),∠1=∠BPG+∠B, ∵PQ平分∠BPG,GM平分∠DGP,
∴∠GPQ=∠BPG,∠MGP=∠DGP, ∵AB∥CD, ∴∠1=∠DGP, ∴∠MGP=(∠BPG+∠B),
∵PQ∥GN, ∴∠NGP=∠GPQ=∠BPG, ∴∠MGN=∠MGP﹣∠NGP=(∠BPG+∠B)﹣∠BPG=∠B,
根據(jù)前面的條件,∠B=30°, ∴∠MGN=×30°=15°,
∴①∠DGP﹣∠MGN的值隨∠DGP的變化而變化;②∠MGN的度數(shù)為15°不變.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,兩個(gè)全等的等邊三角形的邊長(zhǎng)為1m,一個(gè)微型機(jī)器人由A點(diǎn)開(kāi)始按ABCDBEA的順序沿等邊三角形的邊循環(huán)運(yùn)動(dòng),行走2012m停下,則這個(gè)微型機(jī)器人停在( )
A.點(diǎn)A處 B.點(diǎn)B處 C.點(diǎn)C處 D.點(diǎn)E處
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一元二次方程x2﹣2x﹣a=0無(wú)實(shí)數(shù)根,則一次函數(shù)y=(a+1)x+(a﹣1)不經(jīng)過(guò)( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)威海市旅游局統(tǒng)計(jì),今年“五·一”小長(zhǎng)假期間,我市各旅游景點(diǎn)門票收入約2300萬(wàn)元,數(shù)據(jù)“2300萬(wàn)”用科學(xué)記數(shù)法表示為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列度數(shù)不可能是多邊形內(nèi)角和的是( )
A. 360° B. 720°
C. 810° D. 2 160°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算或化簡(jiǎn)(冪的運(yùn)算)
(1).m3·m·(m2)3 (2).(pq)4÷(qp)3·(pq)2.
(3).(3a3)3a5·(3a2)2 (4).22 (2)-2 32÷(3.14)0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC三個(gè)內(nèi)角的平分線交于點(diǎn)O,點(diǎn)D在CA的延長(zhǎng)線上,且DC=BC,AD=AO,若∠BAC=92°,則∠BCA的度數(shù)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com