【題目】如圖所示,兩個全等的等邊三角形的邊長為1m,一個微型機器人由A點開始按ABCDBEA的順序沿等邊三角形的邊循環(huán)運動,行走2012m停下,則這個微型機器人停在( )
A.點A處 B.點B處 C.點C處 D.點E處
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y1=a(x﹣2)2的圖象與直線交于A(0,﹣1),B(2,0)兩點.
(1)確定二次函數(shù)的解析式;
(2)設直線AB解析式為y2,根據(jù)圖形,確定當y1>y2時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,E,F,G,H分別為邊AB,BC,CD,DA上的點,HA=EB=FC=GD,連接EG,FH,交點為O.
(1)如圖2,連接EF,FG,GH,HE,試判斷四邊形EFGH的形狀,并證明你的結論;
(2)將正方形ABCD沿線段EG,HF剪開,再把得到的四個四邊形按圖3的方式拼接成一個四邊形.若正方形ABCD的邊長為3cm,HA=EB=FC=GD=1cm,則圖3中陰影部分的面積為 cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡行走20m,到達坡頂D處,已知斜坡的坡角為15°.(sin15°=0.259,cos15°=0.966,tan15°=0.268,以下計算結果精確到0.1m)
(1)求小華此時與地面的垂直距離CD的值;
(2)小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 (1)、如圖,AC平分∠DAB,∠1=∠2,試說明AB與CD的位置關系,并予以證明;
(2)如圖,在(1)的條件下,AB的下方兩點E,F滿足:BF平分∠ABE,CF 平分∠DCE,若∠CFB=20°,∠DCE=70°,求∠ABE的度數(shù)
(3)在前面的條件下,若P是BE上一點;G是CD上任一點,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列結論:①∠DGP﹣∠MGN的值不變;②∠MGN 的度數(shù)不變.可以證明,只有一個是正確的,請你作出正確的選擇并求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點E從D點出發(fā),以每秒4個單位的速度沿D→A→D勻速移動,點F從點C出發(fā),以每秒1個單位的速度沿CB向點B作勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當有一個點到達終點時,其余兩點也隨之停止運動,假設移動時間為t秒.
(1)試說明:AD∥BC;
(2)在移動過程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請你探究這樣的情況會出現(xiàn)幾次?并分別求出此時的移動時間t和G點的移動距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com