【題目】閱讀下列材料并解決有關(guān)問題:

我們知道,|m|= .現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代

數(shù)式,如化簡代數(shù)式|m+1|+|m2|時,可令 m+1=0 m2=0,分別求得 m=1,m=2(稱﹣12 分別為|m+1|與|m2|的零點值).在實數(shù)范圍內(nèi), 零點值 m=1 m=2 可將全體實數(shù)分成不重復(fù)且不遺漏的如下 3 種情況:

1m<﹣1;(2)﹣1m2;(3m2.從而化簡代數(shù)式|m+1|+|m2| 可分以下 3 種情況:

1)當(dāng) m<﹣1 時,原式=﹣(m+1)﹣(m2=2m+1;

2)當(dāng)﹣1m2 時,原式=m+1﹣(m2=3;

3)當(dāng) m2 時,原式=m+1+m2=2m1

綜上討論,原式=

通過以上閱讀,請你解決以下問題:

1)分別求出|x5|和|x4|的零點值;

2)化簡代數(shù)式|x5|+|x4|;

3)求代數(shù)式|x5|+|x4|的最小值.

【答案】(1)5 和 4;(2)原式=;(3)1.

【解析】

試題(1)令 x﹣5=0,x﹣4=0,解得 x 的值即可;(2)分為 x<4、4≤x<5、x≥5 三種情況化簡即可;(3)根據(jù)(2)中的化簡結(jié)果判斷即可.

試題解析:

(1)令 x﹣5=0,x﹣4=0, 解得:x=5 和 x=4, 故|x﹣5|和|x﹣4|的零點值分別為 5 和 4;

(2)當(dāng) x<4 時,原式=5﹣x+4﹣x=9﹣2x; 當(dāng) 4≤x<5 時,原式=5﹣x+x﹣4=1;

當(dāng) x≥5 時,原式=x﹣5+x﹣4=2x﹣9.

綜上討論,原式=

(3)當(dāng) x<4 時,原式=9﹣2x>1; 當(dāng) 4≤x<5 時,原式=1;

當(dāng) x≥5 時,原式=2x﹣9>1.

故代數(shù)式的最小值是 1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按下面程序計算,即根據(jù)輸入的判斷是否大于500,若大于500則輸出,結(jié)束計算,若不大于500,則以現(xiàn)在的的值作為新的的值,繼續(xù)運算,循環(huán)往復(fù),直至輸出結(jié)果為止.若開始輸入的值為正整數(shù),最后輸出的結(jié)果為656,則滿足條件的所有的值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個形如六邊形的點陣,它的中心是一個點,作為第一層,第二層每邊有兩個點,第三層每邊有三個點,依此類推.

1)填寫下表:

數(shù)

1

2

3

4

5

該層對應(yīng)的點數(shù)

1

6

2)寫出第n層所對應(yīng)的點數(shù)(n≥2).

3)如果某一層共96個點,你知道它是第幾層嗎?

4)有沒有一層,它的點數(shù)為100個?

5)寫出n層的六邊形點陣的總點數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,點A(1,5)和點B(m,1)均在反比例函數(shù)y= 圖象上.

(1)求m,k的值;
(2)設(shè)直線AB與x軸交于點C,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】認(rèn)真閱讀并填空:

已知:如圖,∠1=2,∠C=D,試說明:∠A=F

解:∵∠1=2(已知),∠2=3

∴∠1=3(等量代換)

BDEC

∴∠4=C(兩直線平行,同位角相等)

又∠C=D(已知)

∴∠4=D

(內(nèi)錯角相等,兩直線平行)

∴∠A=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O與正方形ABCD的兩邊AB、AD相切,且DE與⊙O相切于E點.若正方形ABCD的周長為44,且DE=6,則sin∠ODE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)計劃購進(jìn)A、B兩種樹苗,已知1A種樹苗和2B種樹苗共20元,且A種樹苗比B種樹苗每株多2元.

1A、B兩種樹苗每株各多少元?

2)若購買A、B兩種樹苗共360株,并且A種樹苗的數(shù)量不少于B種樹苗數(shù)量的一半,請你設(shè)計一種費用最省的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】()問題提出:如何把n個邊長為1的正方形,剪拼成一個大正方形?

()解決方法

探究一:若n是完全平方數(shù),我們不用剪切小正方形,可直接將小正方形拼成一個大正方形,如圖(1),用四個邊長為1的小正方形可以拼成一個大正方形.

問題1:請用9個邊長為1的小正方形在圖(2)的位置拼成一個大正方形.

探究二:若n2,5,10,13等這些數(shù),都可以用兩個正整數(shù)的平方和來表示,以n5為例,用5個邊長為1的小正方形剪拼成一個大正方形.

(1)計算:拼成的大正方形的面積為5,邊長為,可表示成;

(2)剪切:如圖(3)5個小正方形按如圖所示分成5部分,虛線為剪切線;

(3)拼圖:以圖(3)中的虛線為邊,拼成一個邊長為的大正方形,如圖(4)

問題2:請仿照上面的研究方式,用13個邊長為1的小正方形剪拼成一個大正方形;

(1)計算:拼成的大正方形的面積為____,邊長為_____,可表示成____;

(2)剪切:請仿照圖(3)的方法,在圖(5)的位置畫出圖形.

(3)拼圖:請仿照圖(4)的方法,在圖(6)的位置出拼成的圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6,AD8PAD上的動點,PEAC,PFBDF,求PE+PF的值.

查看答案和解析>>

同步練習(xí)冊答案