【題目】如果方程x2+px+q=0的兩個根是x1、x2 , 那么x1+x2=﹣p,x1x2=q,請根據(jù)以上結論,解決下列問題:
(1)已知x1、x2是方程x2+4x﹣2=0的兩個實數(shù)根,求+的值;
(2)已知方程x2+bx+c=0的兩根分別為+1、﹣1,求出b、c的值;
(3)關于x的方程x2+(m﹣1)x+m2﹣3=0的兩個實數(shù)根互為倒數(shù),求m的值.

【答案】解:(1)∵x1+x2=﹣4,x1x2=﹣2,
=2.
(2)=,=1;
(3)∵m2﹣3=1,
∴m=±2(2分),
當m=2時,方程沒有實數(shù)根,舍去,
當m=﹣2時,方程有兩個實數(shù)根互為倒數(shù).
【解析】(1)利用根與系數(shù)的關系得出x1+x2=﹣4,x1x2=﹣2,進一步整理代入求得數(shù)值即可;
(2)利用根與系數(shù)的關系直接求得答案即可;
(3)利用兩個實數(shù)根互為倒數(shù)得出m2﹣3=1,求得m的數(shù)值,進一步判斷得出答案即可.
【考點精析】利用根與系數(shù)的關系對題目進行判斷即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為O直徑,C、D為O上不同于A、B的兩點,ABD=2BAC,連接CD.過點C作CEDB,垂足為E,直線AB與CE相交于F點.

(1)求證:CFO的切線;

(2)當BF=5,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:3a22a3+a7÷a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(a+1)x2+x+a2﹣1=0的一個根是0,則這個方程的另一個根是( 。
A.
B.-
C.1
D.-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1、x2是一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根,且+﹣2的值為整數(shù),則整數(shù)k的最大值為( 。
A.-2
B.-3
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一組數(shù)據(jù)2、-1、0、2、-1、a的眾數(shù)為a,則這組數(shù)據(jù)的平均數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果方程x2+px+q=0有兩個實數(shù)根x1 , x2 , 那么x1+x2=﹣p,x1x2=q,請根據(jù)以上結論,解決下列問題:
(1)已知a、b是方程x2+15x+5=0的二根,則=?
(2)已知a、b、c滿足a+b+c=0,abc=16,求正數(shù)c的最小值.
(3)結合二元一次方程組的相關知識,解決問題:已知是關于x,y的方程組的兩個不相等的實數(shù)解.問:是否存在實數(shù)k,使得y1y2=2?若存在,求出的k值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(2nx+3x2)﹣2(﹣4x22x+1)的結果中不含x項,則n_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3a22a+4a27a

查看答案和解析>>

同步練習冊答案