【題目】如圖所示,在平面直角坐標(biāo)系中,過點A(﹣ ,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:∵x2﹣2x﹣3=0,
∴x=3或x=﹣1,
∴B(0,3),C(0,﹣1),
∴BC=4
(2)
解:∵A(﹣ ,0),B(0,3),C(0,﹣1),
∴OA= ,OB=3,OC=1,
∴OA2=OBOC,
∵∠AOC=∠BOA=90°,
∴△AOC∽△BOA,
∴∠CAO=∠ABO,
∴∠CAO+∠BAO=∠ABO+∠BAO=90°,
∴∠BAC=90°,
∴AC⊥AB
(3)
解:設(shè)直線AC的解析式為y=kx+b,
把A(﹣ ,0)和C(0,﹣1)代入y=kx+b,
∴ ,
解得: ,
∴直線AC的解析式為:y=﹣ x﹣1,
∵DB=DC,
∴點D在線段BC的垂直平分線上,
∴D的縱坐標(biāo)為1,
∴把y=1代入y=﹣ x﹣1,
∴x=﹣2 ,
∴D的坐標(biāo)為(﹣2 ,1)
(4)
解:設(shè)直線BD的解析式為:y=mx+n,直線BD與x軸交于點E,
把B(0,3)和D(﹣2 ,1)代入y=mx+n,
∴ ,
解得 ,
∴直線BD的解析式為:y= x+3,
令y=0代入y= x+3,
∴x=﹣3 ,
∴E(﹣3 ,0),
∴OE=3 ,
∴tan∠BEC= = ,
∴∠BEO=30°,
同理可求得:∠ABO=30°,
∴∠ABE=30°,
當(dāng)PA=AB時,如圖1,
此時,∠BEA=∠ABE=30°,
∴EA=AB,
∴P與E重合,
∴P的坐標(biāo)為(﹣3 ,0),
當(dāng)PA=PB時,如圖2,
此時,∠PAB=∠PBA=30°,
∵∠ABE=∠ABO=30°,
∴∠PAB=∠ABO,
∴PA∥BC,
∴∠PAO=90°,
∴點P的橫坐標(biāo)為﹣ ,
令x=﹣ 代入y= x+3,
∴y=2,
∴P(﹣ ,2),
當(dāng)PB=AB時,如圖3,
∴由勾股定理可求得:AB=2 ,EB=6,
若點P在y軸左側(cè)時,記此時點P為P1,
過點P1作P1F⊥x軸于點F,
∴P1B=AB=2 ,
∴EP1=6﹣2 ,
∴sin∠BEO= ,
∴FP1=3﹣ ,
令y=3﹣ 代入y= x+3,
∴x=﹣3,
∴P1(﹣3,3﹣ ),
若點P在y軸的右側(cè)時,記此時點P為P2,
過點P2作P2G⊥x軸于點G,
∴P2B=AB=2 ,
∴EP2=6+2 ,
∴sin∠BEO= ,
∴GP2=3+ ,
令y=3+ 代入y= x+3,
∴x=3,
∴P2(3,3+ ),
綜上所述,當(dāng)A、B、P三點為頂點的三角形是等腰三角形時,點P的坐標(biāo)為(﹣3 ,0),(﹣ ,2),(﹣3,3﹣ ),(3,3+ ).
【解析】(1)解出方程后,即可求出B、C兩點的坐標(biāo),即可求出BC的長度;(2)由A、B、C三點坐標(biāo)可知OA2=OCOB,所以可證明△AOC∽△BOA,利用對應(yīng)角相等即可求出∠CAB=90°;(3)容易求得直線AC的解析式,由DB=DC可知,點D在BC的垂直平分線上,所以D的縱坐標(biāo)為1,將其代入直線AC的解析式即可求出D的坐標(biāo);(4)A、B、P三點為頂點的三角形是等腰三角形,可分為以下三種情況:①AB=AP;②AB=BP;③AP=BP;然后分別求出P的坐標(biāo)即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形AOB的直角頂點A在第四象限,頂點B(0,﹣2),點C(0,1),點D在邊AB上,連接CD交OA于點E,反比例函數(shù) 的圖象經(jīng)過點D,若△ADE和△OCE的面積相等,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x | … | 1 | 2 | 3 | 4 | 5 | … |
y | … | 0 | ﹣3 | ﹣6 | ﹣6 | ﹣3 | … |
從上表可知,下列說法中正確的有( )
① =6;②函數(shù)y=ax2+bx+c的最小值為﹣6;③拋物線的對稱軸是x= ;④方程ax2+bx+c=0有兩個正整數(shù)解.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開放以下體育課外活動項目:A.籃球、B.乒乓球、C.跳繩、D.踢毽子.為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖(如圖(1),圖(2)),
請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有人;
(2)請你將條形統(tǒng)計圖補充完整;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為△ABD的外接圓上的一動點(點C不在 上,且不與點B,D重合),∠ACB=∠ABD=45°
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證: AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對稱圖形為△ABM,連接DM,試探究DM2 , AM2 , BM2三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點,將△ADE繞點E順時針旋轉(zhuǎn)180°,點D的對應(yīng)點為C,點A的對應(yīng)點為F,過點E作ME⊥AF交BC于點M,連接AM、BD交于點N,現(xiàn)有下列結(jié)論: ①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2 , l1、l2之間的距離為8,點P到直線l1的距離為6,點Q到直線l2的距離為4,PQ=4 ,在直線l1上有一動點A,直線l2上有一動點B,滿足AB⊥l2 , 且PA+AB+BQ最小,此時PA+BQ= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C為某公園的三個景點,景點A和景點B之間有一條筆直的小路,現(xiàn)要在小路上建一個涼亭P,使景點B、景點C到?jīng)鐾的距離之和等于景點B到景點A的距離,請用直尺和圓規(guī)在所給的圖中作出點P.(不寫作法和證明,只保留作圖痕跡)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com