【題目】下列各式計算正確的是(
A.(a+b)2=a2+b2
B.x2x3=x6
C.x2+x3=x5
D.(a33=a9

【答案】D
【解析】解:A、(a+b)2=a2+2ab+b2 , 故本選項錯誤;
B、x2x3=x5 , 故本選項錯誤;
C、x2與x3不是同類項,不能合并,故本選項錯誤;
D、(x33=x9 , 故本選項正確;
故選D.
【考點精析】解答此題的關(guān)鍵在于理解同底數(shù)冪的乘法的相關(guān)知識,掌握同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù)),以及對完全平方公式的理解,了解首平方又末平方,二倍首末在中央.和的平方加再加,先減后加差平方.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,C=90°,ACBC,DBC上一點,且到A,B兩點的距離相等.

1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);

2)連結(jié)AD,若∠B=33°,則∠CAD=  °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下列材料,并完成相應的任務:

阿基米德折弦定理

阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來最偉大的數(shù)學家之一,他與牛頓、高斯并成為三大數(shù)學王子.

阿拉伯Al﹣Binmi的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.

阿基米德折弦定理:如圖1,AB和BC是O的兩條弦(即折線ABC是圓的一條折弦),BCAB,M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.下面是運用“截長法”證明CD=AB+BD的部分證明過程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.

M是 的中點,

MA=MC.

任務:

(1)請按照上面的證明思路,寫出該證明的剩余部分;

(2)填空:如圖3,已知等邊ABC內(nèi)接于O,AB=2,D為上一點,ABD=45°,AEBD于點E,則BDC的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一個平面去截一個圓錐,截面的形狀不可能是( )

A.B.矩形C.橢圓D.三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種細胞的直徑0.000 000 95米,將0.000 000 95用科學計數(shù)法表示為_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗想用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.不知能否裁出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學支教.

(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是

(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學校的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,汽車在東西向的公路l上行駛,途中A,B,C,D四個十字路口都有紅綠燈.AB之間的距離為800米,BC1000米, CD1400米,且l上各路口的紅綠燈設(shè)置為:同時亮紅燈或同時亮綠燈,每次紅(綠)燈亮的時間相同,紅燈亮的時間與綠燈亮的時間也相同.若綠燈剛亮時,甲汽車從A路口以每小時30千米的速度沿l向東行駛,同時乙汽車從D路口以相同的速度沿l向西行駛,這兩輛汽車通過四個路口時都沒有遇到紅燈,則每次綠燈亮的時間可能設(shè)置為( )

A. 50B. 45C. 40D. 35

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:c0,abc0,a﹣b+c0,2a﹣3b=0,c﹣4b0.其中正確結(jié)論的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

同步練習冊答案