【題目】小麗想用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.不知能否裁出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?請說明理由.
【答案】解:不同意小明的說法.理由如下: 設(shè)面積為300平方厘米的長方形的長寬分為3x,2x,則3x2x=300,x2=50,
∴x=5 ,
∴面積為300平方厘米的長方形的長寬分為15 cm,10 cm,
∵面積為400平方厘米的正方形的邊長為20,
∴20<15 ,
∴用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.
【解析】設(shè)面積為300平方厘米的長方形的長寬分為3x,2x,則3x2x=300,x2=50,解得x=5 ,而面積為400平方厘米的正方形的邊長為20,由于15 >20,所以用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.
【考點精析】解答此題的關(guān)鍵在于理解算數(shù)平方根的相關(guān)知識,掌握正數(shù)a的正的平方根叫做a的算術(shù)平方根;正數(shù)和零的算術(shù)平方根都只有一個,零的算術(shù)平方根是零.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.
(1)將△ABP繞點B順時針旋轉(zhuǎn)90°,得到△BEC,請你畫出△BEC.
(2)連接PE,求證:△PEC是直角三角形;
(3)填空:∠APB的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,頂點為M的拋物線y=ax2+bx(a>0),經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=120°.
(1)求這條拋物線的表達式;
(2)連接OM,求∠AOM的大;
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在熱氣球上A處測得塔頂B的仰角為52°,測得塔底C的俯角為45°,已知A處距地面98米,求塔高BC.(結(jié)果精確到0.1米)
【參考數(shù)據(jù):sin52°=0.79,cos52°=0.62,tan52°=1.28】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3.
(1)△ABC與△A1B1C1的位似比等于 ;
(2)在網(wǎng)格中畫出△A1B1C1關(guān)于y軸的軸對稱圖形△A2B2C2;
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設(shè)點P(x,y)為△ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應(yīng)點的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com