【題目】如圖,小明將一個正方形紙剪去一個寬為的長條后, 再從剩下的長方形紙片上剪去一個寬為的長條,如果兩次剪下的長條面積正好相等,那么剩下的白色長方形紙的面積為(  )

A.B.C.D.

【答案】C

【解析】

首先根據(jù)題意,設(shè)原來正方形紙的邊長是xcm,則第一次剪下的長條的長是xcm,寬是4cm,第二次剪下的長條的長是x-4cm,寬是5cm;然后根據(jù)第一次剪下的長條的面積=第二次剪下的長條的面積,列出方程,求出x的值,然后求出白色長方形紙的面積.

解:設(shè)原來正方形紙的邊長是xcm,則第一次剪下的長條的長是xcm,寬是4cm,第二次剪下的長條的長是x-4cm,寬是5cm,則有:

,

解得:,

∴原來正方形紙片的邊長為20cm,

∴白色長方形的長為:cm,寬為:cm,

∴剩下的白色長方形紙的面積為:cm2

故選擇:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)今微信運動被越來越多的人關(guān)注和喜愛,某興趣小組隨機調(diào)查了我市50名教師某日微信運動中的步數(shù)情況進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):

步數(shù)

頻數(shù)

頻率

0≤x4000

8

a

4000≤x8000

15

0.3

8000≤x12000

12

b

12000≤x16000

c

0.2

16000≤x20000

3

0.06

20000≤x24000

d

0.04

請根據(jù)以上信息,解答下列問題:

1)寫出a,bc,d的值并補全頻數(shù)分布直方圖;

2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計日行走步數(shù)超過12000步(包含12000步)的教師有多少名?

3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點DAB的中點,DE⊥BC,垂足為點E,連接CD

1)如圖1,DEBC的數(shù)量關(guān)系是   ;

2)如圖2,若P是線段CB上一動點(點P不與點BC重合),連接DP,將線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,連接BF,請猜想DE、BFBP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)若點P是線段CB延長線上一動點,按照(2)中的作法,請在圖3中補全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】棱長為a的正方體,擺放成如圖所示的形狀,動手試一試,并回答下列問題:

1)如果這一物體擺放了如圖所示的上下三層,由幾個正方體構(gòu)成?

2)如圖形所示物體的表面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學將組織七年級學生春游一天,由王老師和甲、乙兩同學到客車租賃公司洽談租車事宜

1兩同學向公司經(jīng)理了解租車的價格,公司經(jīng)理對他們說公司有45座和60座兩種型號的客車可供租用,60座的客車每輛每天的租金比45座的貴100元王老師說我們學校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學想了一下,都說知道了價格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經(jīng)理問你們準備怎樣租車甲同學說我的方案是只租用45座的客車,可是會有一輛客車空出30個座位;乙同學說我的方案只租用60座客車,正好坐滿且比甲同學的方案少用兩輛客車王老師在旁聽了他們的談話說從經(jīng)濟角度考慮,還有別的方案嗎?如果是你你該如何設(shè)計租車方案,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分c1與經(jīng)過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.

(1)求A、B兩點的坐標;

(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當△BDM為直角三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程x2﹣2(2﹣k)x+k2+12=0有實數(shù)根α、β.

(1)求實數(shù)k的取值范圍;

(2)設(shè),求t的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠AOE2COE.若∠DOE36°,求∠EOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=-x+2x軸、y軸分別交于點A、C,拋物線y=-x2bxc過點A、C,且與x軸交于另一點B,在第一象限的拋物線上任取一點D,分別連接CD、AD,作于點E

(1)求拋物線的表達式;

(2)ACD面積的最大值;

(3)CEDCOB相似,求點D的坐標.

查看答案和解析>>

同步練習冊答案