【題目】依據(jù)國(guó)家實(shí)行的《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對(duì)懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項(xiàng)建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在 范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查。抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表;

根據(jù)統(tǒng)計(jì)圖表提供的信息,下列說法中

①抽取男生的樣本中,身高 之間的學(xué)生有18人;

②初一學(xué)生中女生的身高的中位數(shù)在組;

③抽取的樣本中抽取女生的樣本容量是38;

④初一學(xué)生身高在 之間的學(xué)生約有800人。其中合理的是(

A. ①②B. ①④C. ②④D. ③④

【答案】B

【解析】

根據(jù)頻數(shù)分布直方圖和中位數(shù)的定義可判斷①、②;由男生總?cè)藬?shù)及男生比女生多2人可判斷③;用男女生身高的樣本中160cm170cm所占比例乘以男女生總?cè)藬?shù)可判斷④.

解:由直方圖可知,抽取男生的樣本中,身高在155≤x165之間的學(xué)生有8+10=18人,故①正確;

AB的百分比之和為10.5%+37.5%=48%50%,則女生身高的中位數(shù)在C組,故②錯(cuò)誤;

∵男生身高的樣本容量為4+8+10+12+8=42

∴女生身高的樣本容量為40,故③錯(cuò)誤;

∵女生身高在160cm170cm(不含170cm)的學(xué)生有40×30%+15%=18人,

∴身高在160cm170cm(不含170cm)的學(xué)生有(840+800×=800(人),故④正確;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1

2[4a2b2ab20a2ab]÷(-2a2);

3)(x3)(x4)-(x12;

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的口袋里裝有白、黃、藍(lán)三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè),現(xiàn)從中任意摸出一個(gè)是白球的概率為

1)試求袋中藍(lán)球的個(gè)數(shù);

2)第一次任意摸一個(gè)球(不放回),第二次再摸一個(gè)球,請(qǐng)用畫樹狀圖或列表格法,求兩次摸到都是白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD的兩條對(duì)角線ACBD交于點(diǎn)O,點(diǎn)ECD的中點(diǎn),△DOE的面積為l0cm2,則△ABD的面積為(

A.15cm2B.20cm2C.30cm2D.40cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,為面向鄉(xiāng)鎮(zhèn)市場(chǎng),蘇寧電器分店決定用76000元購(gòu)進(jìn)室內(nèi)用、室外用節(jié)能燈,已知這兩種類型的節(jié)能燈進(jìn)價(jià)、售價(jià)如下:

價(jià)格

類型

進(jìn)價(jià)(元/盞)

售價(jià)(元/盞)

室內(nèi)用節(jié)能燈

40

58

室外用節(jié)能燈

50

70

(1)若該分店共購(gòu)進(jìn)節(jié)能燈1700盞,問購(gòu)進(jìn)的室內(nèi)用、室外用節(jié)能燈各多少盞?

(2)若該分店將進(jìn)貨全部售完后獲利要不少于32000元,問至少需要購(gòu)進(jìn)多少盞室內(nèi)用節(jié)能燈?

(3)掛職鍛煉的大學(xué)生村官王祥自酬了4650元在該分店購(gòu)買這兩種類型的節(jié)能燈若干盞,分發(fā)給村民使用,其中室內(nèi)用節(jié)能燈盞數(shù)不少于室內(nèi)用節(jié)能燈盞數(shù)的2倍,問王祥最多購(gòu)買室外用節(jié)能燈多少盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程

(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;

(2)若等腰三角形ABC的一邊長(zhǎng)為,另兩邊的長(zhǎng)b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CDAB于點(diǎn)D,∠ACD=3BCD,E是斜邊AB的中點(diǎn),則∠ECD的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形中,點(diǎn)在線段上,于點(diǎn),點(diǎn)在直線上,作直線,過點(diǎn)作直線交直線于點(diǎn).

1 2 3

(1)在如圖1所示的情況下,求證:;

(2)若三角形不變,,兩點(diǎn)的位置也不變,點(diǎn)在直線上運(yùn)動(dòng).

①當(dāng)點(diǎn)在三角形內(nèi)部時(shí),說明的數(shù)量關(guān)系:

②當(dāng)點(diǎn)在三角形外部時(shí),①中結(jié)論是否依然成立?若不成立,又有怎樣的數(shù)量關(guān)系?請(qǐng)?jiān)趫D2中畫圖探究,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)DAD交⊙O于點(diǎn)E

(1) 求證:AC平分∠DAB;

(2) 連接BEAC于點(diǎn)F,若cosCAD,求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案