【題目】甲、乙、丙、丁4名同學(xué)進行一次羽毛球單打比賽,要從中選出2名同學(xué)打第一場比賽,求下列事件的概率:
(1)已確定甲打第一場,再從其余3名同學(xué)中隨機選取1名,恰好選中乙同學(xué);
(2)隨機選取2名同學(xué),其中有乙同學(xué).
【答案】
(1)解:已確定甲打第一場,再從其余3名同學(xué)中隨機選取1名,恰好選中乙同學(xué)的概率是
(2)解:從甲、乙、丙、丁4名同學(xué)中隨機選取2名同學(xué),
所有可能出現(xiàn)的結(jié)果有:(甲、乙)、(甲、丙)、(甲、。ⅲㄒ、丙)、(乙、丁)、(丙、。灿6種,
它們出現(xiàn)的可能性相同,所有的結(jié)果中,滿足“隨機選取2名同學(xué),其中有乙同學(xué)”(記為事件A)的結(jié)果有3種,
所以P(A)= =
【解析】(1)由一共有3種等可能性的結(jié)果,其中恰好選中乙同學(xué)的有1種,即可求得答案;(2)先求出全部情況的總數(shù),再求出符合條件的情況數(shù)目,二者的比值就是其發(fā)生的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點E,F(xiàn),G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點,若AC⊥BD,且AC≠BD,則四邊形EFGH的形狀是(填“梯形”“矩形”或“菱形”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù): ≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,則平臺DE的長最多為米;
(2)一座建筑物GH距離坡角A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2個單位,一只烏龜從A點出發(fā)以2個單位/秒的速度順時針繞正方形運動,另有一只兔子也從A點出發(fā)以6個單位/秒的速度逆時針繞正方形運動,則第2018次相遇在( )
A. 點A B. 點B C. 點C D. 點D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將45°的∠AOB按下面的方式放置在一把刻度尺上:頂點O與尺下沿的端點重合,OA與尺下沿重合,OB與尺上沿的交點B在尺上的讀數(shù)恰為2cm.若按相同的方式將37°的∠AOC放置在該刻度尺上,則OC與尺上沿的交點C在尺上的讀數(shù)約為cm.(結(jié)果精確到0.1cm,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下框中是小明對一道題目的解答以及老師的批改.
題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m的空地,其他三側(cè)內(nèi)墻各保留1m的通道,當(dāng)溫室的長與寬各為多少時,矩形蔬菜種植區(qū)域的面積是288m2? |
我的結(jié)果也正確!
(1)小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.結(jié)果為何正確呢?
(2)請指出小明解答中存在的問題,并補充缺少的過程: 變化一下會怎樣…
(3)如圖,矩形A′B′C′D′在矩形ABCD的內(nèi)部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,設(shè)AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應(yīng)滿足什么條件?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有5根小木棒,長度分別為:2、3、4、5、7(單位:cm),從中任意取出3根,
(1)列出所選的3根小木棒的所有可能情況;
(2)如果用這3根小木棒首尾順次相接,求它們能搭成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明設(shè)計了一個問題,分兩步完成:
(1)已知關(guān)于x的一元一次方程,請畫出數(shù)軸,并在數(shù)軸上標(biāo)注a與對應(yīng)的點,分別記作A,B;
(2)在第1問的條件下,在數(shù)軸上另有一點C對應(yīng)的數(shù)為y,C與A的距離是C與B的距離的5倍,且C在表示5的點的左側(cè),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N,設(shè)∠AEM=α(0°<α<90°),給出下列四個結(jié)論: ①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④S△EMN= .
上述結(jié)論中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com