【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)的坐標(biāo)分別為(-6,7)、(-3,0)、(0,3).
(1)畫(huà)出△ABC,并求△ABC的面積.
(2)在平面直角坐標(biāo)系中平移△ABC,使點(diǎn)C經(jīng)過(guò)平移后的對(duì)應(yīng)點(diǎn)為C'(5,4),平移后△ABC得到△A'B'C',畫(huà)出平移后的△A'B'C',并寫(xiě)出點(diǎn)A',B'的坐標(biāo)
(3)P(-3,m)為△ABC中一點(diǎn),將點(diǎn)P向右平移4個(gè)單位后,再向上平移6個(gè)單位得到點(diǎn)Q(n,-3),則m= n=
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析,A′(﹣1,8),B′(2,1);(3)﹣9,1.
【解析】
(1)根據(jù)各點(diǎn)在坐標(biāo)系中的位置描出各點(diǎn),并順次連接即可,面積利用矩形面積減去三角形面積求解;
(2)根據(jù)圖形平移的性質(zhì)畫(huà)出平移后的△A′B′C′,并寫(xiě)出點(diǎn)A′,B′的坐標(biāo)即可;
(3)根據(jù)點(diǎn)平移的性質(zhì)即可得出m、n的值.
解:
(1)如圖,△ABC即為所求
;
作輔助線,過(guò)AF⊥x軸,垂足是F, AE⊥y軸,垂足是E.
△ABC的面積=S矩形AFOE-S△AFE- S△BCO- S△AEC
即面積是15.
(2)C(0,3)經(jīng)過(guò)平移后的對(duì)應(yīng)點(diǎn)為C′(5,4),則C點(diǎn)即為,向上平移1個(gè)單位,向右平移5個(gè)單位,相應(yīng)的A,B,也一樣平移即可得到:如圖,△A′B′C′即為所求,A′(﹣1,8),B′(2,1);
(3)∵P(﹣3,m)為△ABC中一點(diǎn),將點(diǎn)P向右平移4個(gè)單位后,再向上平移6個(gè)單位得到點(diǎn)Q(n,﹣3),
∴n=﹣3+4=1,m+6=﹣3,
∴n=1,m=﹣9.
故答案為:﹣9,1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)與x軸的兩個(gè)交點(diǎn)的坐標(biāo)分別是(-3,0),(2,0),則方程ax2+bx+c=0(a≠0)的解是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動(dòng)點(diǎn)M,N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)鈍角△ABC(其中∠ABC=120°)繞
點(diǎn)B順時(shí)針旋轉(zhuǎn)得△A1BC1,使得C點(diǎn)落在AB的延長(zhǎng)線上的點(diǎn)C1處,連結(jié)AA1.
(1)寫(xiě)出旋轉(zhuǎn)角的度數(shù);
(2)求證:∠A1AC=∠C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,是的切線,是切點(diǎn),與交于點(diǎn).
(1)如圖①,若,,求的長(zhǎng);
(2)如圖②,若為的中點(diǎn),求證:直線是的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,4),且滿足(a+4)2+=0,過(guò)C作CB⊥x軸于B。
(1)求三角形ABC的面積;
(2)如圖2,若過(guò)B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);
(3)在y軸上是否存在點(diǎn)P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列長(zhǎng)度的四組線段:①1,,;②3,4,5;③6,7,8;④a2-1,a2+1,2a(a為大于1的正整數(shù)).其中能組成直角三角形的有( )
A.①②③B.①②④C.①②D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AD∥BC,AD= ,以對(duì)角線BD為直徑的⊙O與CD切于點(diǎn)D,與BC交于點(diǎn)E,∠ABD=30°,則圖中陰影部分的面積為 . (不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( )
①在同一平面內(nèi)不相交的兩條線段必平行
②過(guò)兩條直線外一點(diǎn),一定可做直線,使,且
③過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行
④兩直線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com