【題目】如圖,已知內(nèi)接于,為的直徑,,交的延長(zhǎng)線于點(diǎn).
(1)為的中點(diǎn),連結(jié),求證:是的切線.
(2)若,求的大。
【答案】(1)證明見(jiàn)解析(2)30°
【解析】
(1)想要證明CE是⊙O的切線,證明∠OCE=90°即可,連接半徑OC,根據(jù)同圓的半徑相等和直角三角形斜邊中線等于斜邊一半可得:∠EBC+∠OBC=∠ECB+∠OCB,則∠OCE=∠OBE=90°,可得結(jié)論;
(2)設(shè)CD=m,則AC=3m,證明△ACB∽△BCD,列比例式可得:BC=m,利用三角函數(shù)定義可得結(jié)論.
(1)連接OC,
∵為的直徑,
∴∠ACB=∠DCB=90°,
∵為的中點(diǎn),
∴BE=CE,
∴∠EBC=∠ECB,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠ECB+∠OCB=∠EBC+∠OBC,
∵,
∴∠OCE=∠OBE=90°,
∴是的切線.
(2)設(shè)CD=m,則AC=3m,
∵△ACB≌△BCD,
∴,
∴,
∴,
∴,
∴=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點(diǎn)E在BC的延長(zhǎng)線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=8,CE=2時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)與正比例函數(shù)y=x(x≥0)的圖象,點(diǎn)A(1,4),點(diǎn)A'(4,b)與點(diǎn)B'均在反比例函數(shù)的圖象上,點(diǎn)B在直線y=x上,四邊形AA'B'B是平行四邊形,則B點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,直線x=﹣1是對(duì)稱軸,有下列判斷:①b﹣2a=0,②4a﹣2b+c<0,③a﹣b+c=﹣9a,④若(﹣3,y1),(,y2)是拋物線上的兩點(diǎn),則y1<y2.其中正確的是( 。
A. ①②③B. ①③C. ①④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.
(1)該店每天賣出這兩種菜品共多少份?
(2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣1份;B種菜品售價(jià)每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣冬季流感嚴(yán)重,學(xué)生感染較多,造成不少學(xué)校放假,為了預(yù)防流感,縣教體局要求各校進(jìn)行防控.某學(xué)校計(jì)劃利用周末將教室及公共環(huán)境進(jìn)行“噴藥消毒”,現(xiàn)有甲、乙兩位老師主動(dòng)承接該工作,若甲、乙兩老師合作6小時(shí)可以完成全部工作;若甲老師單獨(dú)做4小時(shí)后,剩下的乙老師單獨(dú)做還需9小時(shí)完成.求甲、乙兩老師單獨(dú)完成該工作各需多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx-3的對(duì)稱軸為直線x=1,交x軸于A,B兩點(diǎn),交y軸于C點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0).
(1)直接寫出A點(diǎn)的坐標(biāo);
(2)求二次函數(shù)y=ax2+bx-3的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CE⊥AB于點(diǎn)F,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心;④APAD=CQCB.其中正確的是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com