【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長(zhǎng).
【答案】
(1)證明:如圖1,連接FO,
∵F為BC的中點(diǎn),AO=CO,
∴OF∥AB,
∵AC是⊙O的直徑,
∴CE⊥AE,
∵OF∥AB,
∴OF⊥CE,
∴OF所在直線垂直平分CE,
∴FC=FE,OE=OC,
∴∠FEC=∠FCE,∠0EC=∠0CE,
∵∠ACB=90°,
即:∠0CE+∠FCE=90°,
∴∠0EC+∠FEC=90°,
即:∠FEO=90°,
∴FE為⊙O的切線;
(2)解:如圖2,
∵⊙O的半徑為3,
∴AO=CO=EO=3,
∵∠EAC=60°,OA=OE,
∴∠EOA=60°,
∴∠COD=∠EOA=60°,
∵在Rt△OCD中,∠COD=60°,OC=3,
∴CD= ,
∵在Rt△ACD中,∠ACD=90°,
CD= ,AC=6,
∴AD= .
【解析】(1)連接FO,由F為BC的中點(diǎn),AO=CO,得到OF∥AB,由于AC是⊙O的直徑,得出CE⊥AE,根據(jù)OF∥AB,得出OF⊥CE,于是得到OF所在直線垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到結(jié)論(2)證出△AOE是等邊三角形,得到∠EOA=60°,再由直角三角形的性質(zhì)即可得到結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,AB=5,內(nèi)切圓半徑為1,則三角形的周長(zhǎng)為( )
A.15
B.12
C.13
D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一塊含30°角的直角三角版和半圓量角器按如圖的方式擺放,使斜邊與半圓相切.若半徑OA=4,則圖中陰影部分的面積為 . (結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸DE交x軸于點(diǎn)E,連接BD.
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)P作PF⊥x軸于點(diǎn)F,G為拋物線上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線PF上一動(dòng)點(diǎn),當(dāng)以F、M、N、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)(π﹣2017)0+|2﹣ |﹣4cos30°+
(2)先化簡(jiǎn),再求值: ﹣ ÷ ,其中a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于問題:證明不等式a2+b2≥2ab,甲、乙兩名同學(xué)的作業(yè)如下: 甲:根據(jù)一個(gè)數(shù)的平方是非負(fù)數(shù)可知(a﹣b)2≥0,
∴a2﹣2ab+b2≥0,
∴a2+b2≥2ab.
乙:如圖1,兩個(gè)正方形的邊長(zhǎng)分別為a、b(b≤a),如圖2,先將邊長(zhǎng)為a的正方形沿虛線部分分別剪成Ⅰ、Ⅱ、Ⅲ三部分,若再將Ⅰ、Ⅱ和邊長(zhǎng)為b的正方形拼接成如圖3所示的圖形,可知此時(shí)圖3的面積為2ab,其面積小于或等于原來兩個(gè)正方形的面積和,故不等式a2+b2≥2ab成立.
則對(duì)于兩人的作業(yè),下列說法正確的是( )
A.甲、乙都對(duì)
B.甲對(duì),乙不對(duì)
C.甲不對(duì),乙對(duì)
D.甲、乙都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹木的利潤(rùn)y1與投資成本x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資成本x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù);
投資量x(萬元) | 2 |
種植樹木的利潤(rùn)y1(萬元) | 4 |
種植花卉的利潤(rùn)y2(萬元) | 2 |
(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶計(jì)劃以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額萬元,種植花卉和樹木共獲利潤(rùn)W萬元,求出W與m之間的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?
(3)若該專業(yè)戶想獲利不低于22萬元,在(2)的條件下,求出投資種植花卉的金額m的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù) 的圖象交于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E.已知C點(diǎn)的坐標(biāo)是(6,﹣1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y= (x<0)的圖象交于點(diǎn)A(﹣1,m),與x軸交于點(diǎn)B(1,0)
(1)求m的值;
(2)求直線AB的解析式;
(3)若直線x=t(t>1)與直線y=kx+b交于點(diǎn)M,與x軸交于點(diǎn)N,連接AN,S△AMN= ,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com