【題目】如圖,在⊙O中,F,G是直徑AB上的兩點,C,D,E是半圓上的三點,如果弧AC的度數(shù)為60°,弧BE的度數(shù)為20°,∠CFA=∠DFB,∠DGA=∠EGB.求∠FDG的大小.
【答案】50°.
【解析】
作C關于AB的對稱點M,作E關于AB的對稱點N,連接CM,F(xiàn)M,求出∠AFM=∠BFD,推出D、F、M三點共線,D、G、N三點共線,求出弧AM=60°,弧BN=20°,即可求出答案.
如圖:作點C關于AB的對稱點M,點E關于AB的對稱點N,連結CM、FM,設CM交AB于點Q,
依題可得AB⊥CM,CQ=MQ,
∴∠CFA=∠AFM,
又∵∠CFA=∠DFB,
∴∠AFM=∠DFB,
∴D、F、M三點共線,
同理可得D、G、N三點共線,
又∵弧AC=60°,弧BE=20°,
∴弧AM=弧AC=60°,弧BN=弧BE=20°,
∴弧MN=180°-60°-20°=100°,
∴∠FDG=×100°=50°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,垂足為,點是邊上的一個動點,過點作交線段于點,作交于點,交線段于點,設.
(1)用含的代數(shù)式表示線段的長;
(2)設的面積為,求與之間的函數(shù)關系式,并寫出定義域;
(3)若為直角三角形,求出的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某校乒乓球隊有水平相當?shù)?/span>A,B,C,D四名隊員.
(1)若將A,B,C,D四名隊員隨機平均分成甲、乙兩組進行乒乓球單打練習,求A、B恰好分在一組的概率.
(2)若從A,B,C,D四名隊員中隨機抽取兩名代表學校參加比賽,求A、B恰好被抽中的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為保障國慶70周年南口閱兵訓練基地全體人員的生活,需通過鐵路、公路兩種運輸方式運送生活物資.原計劃鐵路運輸物資的5倍是公路運輸?shù)?/span>8倍,實際鐵路運輸?shù)奈镔Y減少了15噸,公路運輸增加了15噸,且鐵路運輸物資的2倍比公路運輸?shù)?/span>3倍少60噸.
(1)原計劃鐵路、公路分別運輸多少噸物資到訓練基地?
(2)現(xiàn)采用微型集裝箱裝載這些物資,每個集裝箱裝滿后箱貨總重量為1.6噸,空箱重量為0.1噸.為增加集裝箱的載貨量將其進行改造,改造后每個集裝箱裝滿后箱貨總重量比改造前增加噸,空箱重量比改造前減少噸,其中.改造前的集裝箱每個裝滿后恰好裝下這些物資.若用改造后的集裝箱來裝載這些物資,改造后的集裝箱個數(shù)比改造前少用10個.設改造后的集裝箱最大載貨量總重量為噸,求關于的函數(shù)關系式以及的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F分別是矩形ABCD的邊AB,AD上的點,∠FEC=∠FCE=45°.
(1)求證:AF=CD.
(2)若AD=3,△EFC的面積為4,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(多選)在同一條道路上,甲車從地到地,乙車從地到地,兩車同時出發(fā),乙車先到達目的地,圖中的折線段表示甲,乙兩車之間的距離(千米)與行駛時間(小時)的函數(shù)關系,下列說法正確的是( )
A.甲乙兩車出發(fā)2小時后相遇
B.甲車速度是40千米/小時
C.相遇時乙車距離地100千米
D.乙車到地比甲車到地早小時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,分別交PA、PB于點C、D.若PA、PB的長是關于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,求△PCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩臺機床同時加工直徑為的同種規(guī)格零件,為了檢查兩臺機床加工零件的穩(wěn)定性,質(zhì)檢員從兩臺機床的產(chǎn)品中各抽取件進行檢測,結果如下(單位:):
甲 | |||||
乙 |
(1)分別求出這兩臺機床所加工零件直徑的平均數(shù)和方差;
(2)根據(jù)所學的統(tǒng)計知識,你認為哪一臺機床生產(chǎn)零件的穩(wěn)定性更好一些,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com