【題目】如圖,四邊形內(nèi)接于,對角線為的直徑,過點(diǎn)作AC的垂線交AD的延長線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.
(1)求證:DF是的切線;
(2)若,求的值.
【答案】(1)證明見解析;(2)tan∠ABD=2.
【解析】
(1)如圖,連接OD,由AC是直徑可得∠ADC=90°,利用直角三角形的性質(zhì)結(jié)合等腰三角形的性質(zhì)得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,進(jìn)而得出答案;
(2)由直角三角形兩銳角互余的關(guān)系可得∠DAC=∠DCE,可證明△DAC∽△DCE,利用相似三角形的性質(zhì)結(jié)合勾股定理表示出AD,DC的長,再利用圓周角定理得出tan∠ABD的值即可得答案.
(1)如圖,連接OD,
∵AC是⊙O直徑,
∴∠ADC=90°,
∵點(diǎn)F為CE中點(diǎn),
∴DF=CF,
∴∠FDC=∠DCF,
∵OD=OC,
∴∠ODC=∠OCD,
∵CE⊥AC,
∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
∴DF是⊙O的切線.
(2)∵∠OCD+∠DCF=∠DAC+∠OCD=90°,
∴∠DCF=∠DAC,
∵∠ADC=∠CDE=90°,
∴△DAC∽△DCE,
∴,即CD2=AD·DE,
∵,
∴AC2=20DE2,
∵AC2=CD2+AD2,
∴AD2+AD·DE=20DE2,
∴(AD+5DE)(AD-4DE)=0,
解得:AD=4DE或AD=-5DE(舍去),
∴CD===2DE,
∵∠ABD=∠ACD,
∴tan∠ABD=tan∠ACD===2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月12日是第41個植樹節(jié),某單位積極開展植樹活動,決定購買甲、乙兩種樹苗,用800元購買甲種樹苗的棵數(shù)與用680元購買乙種樹苗的棵數(shù)相同,乙種樹苗每棵比甲種樹苗每棵少6元.
(1)求甲種樹苗每棵多少元?
(2)若準(zhǔn)備用3800元購買甲、乙兩種樹苗共100棵,則至少要購買乙種樹苗多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七年級男生“跳繩”成績的情況,隨機(jī)選取該年級部分男生進(jìn)行測試.以下是根據(jù)測試成績繪制的統(tǒng)計圖表的一部分.
成績等級 | 頻數(shù)(人) | 頻率 |
優(yōu)秀 | ||
良好 | ||
及格 | 10 | 0.2 |
不及格 | 0.1 |
根據(jù)以上信息,解答下列問題:
(1)被測試男生中,成績等級為“優(yōu)秀”的男生人數(shù)占被測試男生總?cè)藬?shù)的百分比為________%,成績等級為“及格”的男生人數(shù)為________人;
(2)被測試男生的總?cè)藬?shù)為________人,成績等級為“不及格”的男生人數(shù)________人;
(3)若該校七年級共有570名男生,根據(jù)調(diào)查結(jié)果,估計該校七年級男生成績等級為“良好”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,點(diǎn)是邊酌中點(diǎn),動點(diǎn)在邊上運(yùn)動,以為折痕將,折疊得到,連接,若,則的最小值是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形折疊,使頂點(diǎn)與邊上的一點(diǎn)重合(不與端點(diǎn),重合),折痕交于點(diǎn),交于點(diǎn),邊折疊后與邊交于點(diǎn),設(shè)正方形的周長為,的周長為,則的值為( )
A.B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個命題:
①當(dāng)x>0時,y>0;
②若a=﹣1,則b=3;
③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;
④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m=2時,四邊形EDFG周長的最小值為6.
其中真命題的序號是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形的兩邊OA,OC分別落在軸,軸的正半軸上,的坐標(biāo)為,反比例函數(shù)的圖象經(jīng)過的中點(diǎn)E,且與BC邊相交于點(diǎn)D.
(1)①求反比例函數(shù)的解析式及點(diǎn)D的坐標(biāo);
②直接寫出的面積為________.
(2)若P是OA上的動點(diǎn),當(dāng)值為最小時,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是第一象限內(nèi)橫坐標(biāo)為的一個定點(diǎn),AC⊥x軸于點(diǎn)M,交直線y=﹣x于點(diǎn)N.若點(diǎn)P是線段ON上的一個動點(diǎn),∠APB=30°,BA⊥PA,則點(diǎn)P在線段ON上運(yùn)動時,A點(diǎn)不變,B點(diǎn)隨之運(yùn)動.求當(dāng)點(diǎn)P從點(diǎn)O運(yùn)動到點(diǎn)N時,點(diǎn)B運(yùn)動的路徑長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com