【題目】觀察下列個(gè)命題:其中真命題是( ).
()直線、、,如果、,那么.
()三角形的三個(gè)內(nèi)角中至少有兩個(gè)銳角.
()平移變換中,各組對應(yīng)點(diǎn)連成的兩線段平行(或共線)且相等.
()三角形的外角和是.
A.()()B.()()C.()()D.()()
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,被直線所截,點(diǎn)是線段上的點(diǎn),過點(diǎn)作,連接,
(1)試說明.
(2)將線段沿著直線平移得到線段,如圖2,連接.若,當(dāng)時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對應(yīng)的點(diǎn)之間的距離;
例 1.解方程,因?yàn)樵跀?shù)軸上到原點(diǎn)的距離為的點(diǎn)對應(yīng)的數(shù)為,所以方程的解為.
例 2.解不等式,在數(shù)軸上找出的解(如圖),因?yàn)樵跀?shù)軸上到對應(yīng)的點(diǎn)的距離等于的點(diǎn)對應(yīng)的數(shù)為或,所以方程的解為或,因此不等式的解集為或.
參考閱讀材料,解答下列問題:
(1)方程的解為 ;
(2)解不等式:;
(3)解不等式:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),B(0,6),A(8,0),以點(diǎn)B為旋轉(zhuǎn)中心把△ABO逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn)O,A旋轉(zhuǎn)后的對應(yīng)點(diǎn)為O′,A′,記旋轉(zhuǎn)角為β.
(1)如圖1,若β=90°,求AA′的長;
(2)如圖2,若β=120°,求點(diǎn)O′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中點(diǎn),AE與BD相交于點(diǎn)F,連接DE.
(1)求證:△ABE≌△BCD;
(2)判斷線段AE與BD的數(shù)量關(guān)系及位置關(guān)系,并說明理由;
(3)若CD=1,試求△AED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小正方形的邊長為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).
(1)畫出△ABC的AB邊上的中線CD;
(2)畫出△ABC向右平移4個(gè)單位后得到的△A1B1C1;
(3)圖中AC與A1C1的關(guān)系是: ;
(4)能使S △ABQ=S △ABC的格點(diǎn)Q,共有 個(gè),在圖中分別用Q 1,Q 2,…表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“3.15”植樹節(jié)活動(dòng)后,對栽下的甲、乙、丙、丁四個(gè)品種的樹苗進(jìn)行成活率觀測,以下是根據(jù)觀測數(shù)據(jù)制成的統(tǒng)計(jì)圖表的一部分:
栽下的各品種樹苗棵數(shù)統(tǒng)計(jì)表 | ||||
植樹品種 | 甲種 | 乙種 | 丙種 | 丁種 |
植樹棵數(shù) | 150 | 125 | 125 |
若經(jīng)觀測計(jì)算得出丙種樹苗的成活率為89.6%,請你根據(jù)以上信息解答下列問題:
(1)這次栽下的四個(gè)品種的樹苗共 棵,乙品種樹苗 棵;
(2)圖1中,甲 %、乙 %,并將圖2補(bǔ)充完整;
(3)求這次植樹活動(dòng)的樹苗成活率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將6個(gè)棱長為2cm的小正方體在地面上堆疊成如圖所示的幾何體,然后將露出的表面部分染成紅色.
(1)畫出這個(gè)的幾何體的三視圖:
(2)該幾何體被染成紅色部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有4個(gè)點(diǎn):A(0,2),B(﹣2,﹣2),C(﹣2,2),D(3,3).
(1)在正方形網(wǎng)格中畫出△ABC的外接圓⊙M,圓心M的坐標(biāo)是 ;
(2)若EF是⊙M的一條長為4的弦,點(diǎn)G為弦EF的中點(diǎn),求DG的最大值;
(3)點(diǎn)P在直線MB上,若⊙M上存在一點(diǎn)Q,使得P、Q兩點(diǎn)間距離小于1,直接寫出點(diǎn)P橫坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com