【題目】如圖,一艘輪船早上8時從點A向正北方向出發(fā),小島P在輪船的北偏西15°方向,輪船每小時航行15海里,11時輪船到達點B處,小島P此時在輪船的北偏西30°方向.

(1)求此時輪船距小島為多少海里?

(2)在小島P的周圍20海里范圍內有暗礁,如果輪船不改變方向繼續(xù)向前航行,是否會有觸礁危險?請說明理由.

【答案】(1)45海里;(2)輪船繼續(xù)向前航行,不會有觸礁危險.

【解析】試題分析: (1)易證∠PAB=APB,即可得PB=AB,即可求PB的長度;
(2)求輪船已知走下去的話,輪船與小島的最小距離即可,若最小距離大于20海里,則不會受影響,若最小距離小于20海里,則會受到影響.

試題解析:

解:(1)∵∠PAB=15°,∠PBC=30°,

∴∠PAB=∠APB,

PB=AB=15×3=45海里;

(2)過P點作PDBC于D,

在RtPBD中,∠PBD=30°,PB=45,

PD=PB=22.5,

22.5>20.

所以,輪船繼續(xù)向前航行,不會有觸礁危險.

點睛: 本題考查了特殊角的三角函數(shù)值的計算,等腰三角形底角相等、腰長相等的性質,本題中求PD的長是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程

(用配方法解方程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在大棚中栽培新品種的蘑菇,在18℃的條件下生長最快,因此用裝有恒溫系統(tǒng)的大棚栽培,如圖是某天恒溫系統(tǒng)從開啟升溫到保持恒溫及關閉.大棚內溫度y(℃)隨時間x(時)變化的函數(shù)圖像,其中BC段是函數(shù)yk0)圖像的一部分.

1)分別求出0≤x≤2x≥12時對應的yx的函數(shù)關系式;

2)若該蘑菇適宜生長的溫度不低于12℃,則這天該種蘑菇適宜生長的時間是多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學教育家波利亞曾說:“對一個數(shù)學問題,改變它的形式,變換它的結構,直到發(fā)現(xiàn)有價值的東西,這是數(shù)學解題的一個重要原則”.

材料一:平方運算和開方運算是互逆運算.如a2±2ab+b2=(a±b2,那么,如何將雙重二次根式化簡.我們可以把轉化為完全平方的形式,因此雙重二次根式得以化簡.

材料二:在直角坐標系xOy中,對于點P(x,y)Q(x,y’)給出如下定義:若則稱點Q為點P的“橫負縱變點”.例如:點(3,2)的“橫負縱變點”為(3,2),點(2,5)的“橫負縱變點”為(2,﹣5).問題:

1)點的“橫負縱變點”為    ,點的“橫負縱變點”為   ;

2)化簡:;

3)已知a為常數(shù)(1≤a≤2),點M(,m)是關于x的函數(shù)圖像上的一點,點M’是點M的“橫負縱變點”,求點M’的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場柜臺銷售每臺進價分別為160元、120元的兩種型號的電器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

種型號

種型號

第一周

3

4

1200

第二周

5

6

1900

(進價、售價均保持不變,利潤=銷售收入—進貨成本)

1)求、兩種型號的電器的銷售單價;

2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?

3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,的中點,點在邊上,將沿翻折,使點落在點處,當時,________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列內容,并答題:我們知道,計算n邊形的對角線條數(shù)公式為: nn3).

如果一個n邊形共有20條對角線,那么可以得到方程nn3=20

整理得n2﹣3n﹣40=0;解得n=8n=﹣5

n為大于等于3的整數(shù),∴n=﹣5不合題意,舍去.

n=8,即多邊形是八邊形.

根據(jù)以上內容,問:

(1)若一個多邊形共有14條對角線,求這個多邊形的邊數(shù);

(2)A同學說:我求得一個多邊形共有10條對角線,你認為A同學說法正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2x軸的交點B(2,0)

(1)求a、b的值;

(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;

(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰RtACB,∠ACB90°,ACBC,點A、C分別在x軸、y軸的正半軸上.

1)如圖1,求證:∠BCO=∠CAO

2)如圖2,若OA5,OC2,求B點的坐標

3)如圖3,點C03),QA兩點均在x軸上,且SCQA18.分別以AC、CQ為腰在第一、第二象限作等腰RtCAN、等腰RtQCM,連接MNy軸于P點,OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.

查看答案和解析>>

同步練習冊答案