【題目】探究:如圖①,點在直線上,點在直線外,連結(jié).過線段的中點作,交的平分線于點,連結(jié).求證:.
應(yīng)用:如圖②,點在內(nèi)部,連結(jié).過線段的中點作,交的平分線于點;作,交的平分線于點,連結(jié)、.若,則的大小為多少度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計,現(xiàn)從該校隨機抽取n名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)參與問卷調(diào)查的每名學(xué)生只能選擇其中一項,并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:
補全條形統(tǒng)計圖;
若該校共有學(xué)生2400名,試估計該校喜愛看電視的學(xué)生人數(shù).
若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在和時的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)的圖象與二次函數(shù)的圖象都經(jīng)過點A,求m和k的值;
(3)設(shè)二次函數(shù)的圖象與x軸交于點B,C(點B在點C的左側(cè)),將二次函數(shù)的圖象在點B,C間的部分(含點B和點C)向左平移個單位后得到的圖象記為C,同時將(2)中得到的直線向上平移n個單位.請結(jié)合圖象回答:當(dāng)平移后的直線與圖象G有公共點時,n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在內(nèi)部做,平分,,,,點為的中點:動點由出發(fā),沿運動,速度為每秒5個單位,動點由出發(fā),沿運動,速度為每秒8個單位,當(dāng)點到達(dá)點時,兩點同時停止運動;過、、作;
(1)判斷的形狀為________,并判斷與的位置關(guān)系為__________;
(2)求為何值時,與相切?求出此時的半徑,并比較半徑與劣弧長度的大;
(3)直接寫出的內(nèi)心運動的路徑長為__________;(注:當(dāng)、、重合時,內(nèi)心就是點)
(4)直接寫出線段與有兩個公共點時,的取值范圍為__________.
(參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 y=x+1 與 y 軸交于點 A1,以 OA1為邊,在 y 軸右側(cè)作正方形 OA1B1C1,延長 C1B1交直線 y=x+1 于點 A2,再以 C1A2為邊作正方形,…,這些正方形與直線 y=x+1 的交點分別為 A1,A2,A3,…,An,則點 Bn 的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為反比例函數(shù)圖象上的兩點,且滿足,若點的坐標(biāo)為,則點的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,甲、乙兩人在玩轉(zhuǎn)盤游戲時,分別把轉(zhuǎn)盤A,B分成3等份和1等份,并在每一份內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)趨^(qū)域的數(shù)字之積為奇數(shù)時,甲獲勝;當(dāng)數(shù)字之積為偶數(shù)時,乙獲勝.如果指針恰好在分割線上時,則需重新轉(zhuǎn)動轉(zhuǎn)盤.
(1)利用畫樹狀圖或列表的方法,求甲獲勝的概率.
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?若公平,請說明理由;若不公平,請你在轉(zhuǎn)盤A上只修改一個數(shù)字使游戲公平(不需要說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是唐初作為“算學(xué)”教科書的著名的《算經(jīng)十書》之一,共三卷,上卷敘述算籌記數(shù)的制度和乘除法則,中卷舉例說明籌算分?jǐn)?shù)法和開平方法,都是了解中國古代籌算的重要資料,下卷收集了一些算術(shù)難題,“雞兔同籠”便是其中一題.下卷中還有一題,記載為:“今有甲乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八.問甲、乙二人持錢各幾何?”意思是:“甲、乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文.如果乙得到甲所有錢的,那么乙也共有錢48文.問甲、乙二人原來各有多少錢?”設(shè)甲原有錢x文,乙原有錢y文,可得方程組( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com