【題目】已知二次函數在和時的函數值相等.
(1)求二次函數的解析式;
(2)若一次函數的圖象與二次函數的圖象都經過點A,求m和k的值;
(3)設二次函數的圖象與x軸交于點B,C(點B在點C的左側),將二次函數的圖象在點B,C間的部分(含點B和點C)向左平移個單位后得到的圖象記為C,同時將(2)中得到的直線向上平移n個單位.請結合圖象回答:當平移后的直線與圖象G有公共點時,n的取值范圍.
【答案】(1);
(2);
(3).
【解析】
(1)由二次函數在和時的函數值相等,可知二次函數圖象的對稱軸為,從而由對稱軸公式,可求得,從而求得二次函數的解析式.
(2)由二次函數圖象經過A點代入可求得,從而由一次函數的圖象經過A點,代入可求得.
(3)根據平移的性質,求得平移后的二次函數和一次函數表達式,根據平移后的直線與圖象C有公共點,求得公共點的坐標即可.
解:(1)∵二次函數在和時的函數值相等,
∴二次函數圖象的對稱軸為.
∴,解得.
∴二次函數解析式為.
(2)∵二次函數圖象經過A點,
∴,A(-3,-6).
又∵一次函數的圖象經過A點,
∴,解得.
(3)由題意可知,二次函數在點B,C間的部分圖象的解析式為
,,
則向左平移后得到的圖象C的解析式為,.
此時一次函數的圖象平移后的解析式為.
∵平移后的直線與圖象C有公共點,
∴兩個臨界的交點為與.
∴當時,,即;
當時,,即.
∴
科目:初中數學 來源: 題型:
【題目】如圖,直線分別與軸、軸交于兩點,點在軸上,,拋物線經過兩點.
(1)求兩點的坐標;
(2)求拋物線的解析式;
(3)點是直線上方拋物線上的一點,過點作于點,作軸交于點,求周長的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,G是邊AB的中點,平行于AB的動直線l分別交△ABC的邊CA、CB于點M、N,設CM=m.
(1)當m=1時,求△MNG的面積;
(2)若點G關于直線l的對稱點為點G′,請求出點G′ 恰好落在△ABC的內部(不含邊界)時,m的取值范圍;
(3)△MNG是否可能為直角三角形?如果能,請求出所有符合條件的m的值;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形 ABCD 中,∠A=∠B= 90°,點 E 在邊 AB 上,點 F 在 AD 的延長線上,且 點 E 與點 F 關于直線 CD 對稱,過點 E 作 EG∥AF 交 CD 于點 G,連接 FG,DE.
(1)求證:四邊形 DEGF 是菱形;
(2)若 AB=10,AF=BC=8,求四邊形 DEGF 的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面內的點 P 和圖形 M,給出如下定義:以點 P 為圓心,以 r 為半徑作⊙P,使得圖形 M 上的所有點都在⊙P 的內部(或邊上),當 r 最小時,稱⊙P 為圖形 M 的 P 點 控制圓,此時,⊙P 的半徑稱為圖形 M 的 P 點控制半徑.已知,在平面直角坐標系中, 正方形 OABC 的位置如圖所示,其中點 B(2,2)
(1)已知點 D(1,0),正方形 OABC 的 D 點控制半徑為 r1,正方形 OABC 的 A 點 控制半徑為 r2,請比較大。r1 r2;
(2)連接 OB,點 F 是線段 OB 上的點,直線 l:y= x+b;若存在正方形 OABC 的 F點控制圓與直線 l 有兩個交點,求 b 的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有甲乙兩個玩具小汽車在筆直的240米跑道上進行折返跑游戲,甲從點出發(fā),勻速在、之間折返跑,同時乙從點出發(fā),以大于甲的速度勻速在、之間折返跑.在折返點的時間忽略不計.
(1)若甲的速度為,乙的速度為,第一次迎面相遇的時間為,則與的關系式___________;
(注釋:當兩車相向而行時相遇是迎面相遇,當兩車在點相遇時也視為迎面相遇)
(2)如圖1,
①若甲乙兩車在距點20米處第一次迎面相遇,則他們在距點_______米第二次迎面相遇:
②若甲乙兩車在距點50米處第一次迎面相遇,則他們在距點__________米第二次迎面相遇;
(3)設甲乙兩車在距點米處第一次迎面相遇,在距點米處第二次迎面相遇.某同學發(fā)現(xiàn)了與的函數關系,并畫出了部分函數圖象(線段,不包括點,如圖2所示).
①則_______,并在圖2中補全與的函數圖象(在圖中注明關鍵點的數據);
②分別求出各部分圖象對應的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究:如圖①,點在直線上,點在直線外,連結.過線段的中點作,交的平分線于點,連結.求證:.
應用:如圖②,點在內部,連結.過線段的中點作,交的平分線于點;作,交的平分線于點,連結、.若,則的大小為多少度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知點為正方形的對角線的交點,點是對角線上的一個動點(點不與重合),分別過點向直線作垂線,垂足分別為點,連接和.
(1)求證:;
(2)如圖②,延長正方形對角線,當點運動到的延長線上時,通過證明判斷(1)中的結論是否仍然成立;
(3)若點在射線上運動,,求線段的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】合與實踐﹣﹣探究圖形中角之間的等量關系及相關問題.
問題情境:
正方形ABCD中,點P是射線DB上的一個動點,過點C作CE⊥AP于點E,點Q與點P關于點E對稱,連接CQ,設∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如圖1,為探究α與β的關系,勤思小組的同學畫出了0°<α<45°時的情形,射線AP與邊CD交于點F.他們得出此時α與β的關系是β=2α.借助這一結論可得當點Q恰好落在線段BC的延長線上(如圖2)時,α= °,β= °;
深入探究:
(2)敏學小組的同學畫出45°<α<90°時的圖形如圖3,射線AP與邊BC交于點G.請猜想此時α與β之間的等量關系,并證明結論;
拓展延伸:
(3)請你借助圖4進一步探究:①當90°<α<135°時,α與β之間的等量關系為 ;
②已知正方形邊長為2,在點P運動過程中,當α=β時,PQ的長為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com