【題目】如圖,在平行四邊形中,過點,垂足為,連接上一點,且.

1)求證:.

2)若,,求的長.

【答案】1)見解析;(2

【解析】

1)求三角形相似就要得出兩組對應(yīng)的角相等,已知了∠BFE=∠C,根據(jù)等角的補角相等可得出∠ADE=∠AFB,根據(jù)ABCD可得出∠BAF=∠AED,這樣就構(gòu)成了兩三角形相似的條件.

2)根據(jù)(1)的相似三角形可得出關(guān)于AB,AEAD,BF的比例關(guān)系,有了AD,AB的長,只需求出AE的長即可.可在直角三角形ABE中用勾股定理求出AE的長,這樣就能求出BF的長了.

1)證明:在平行四邊形ABCD中,

∵∠D+∠C180°,ABCD

∴∠BAF=∠AED

∵∠AFB+∠BFE180°,∠D+∠C180°,∠BFE=∠C

∴∠AFB=∠D,

∴△ABF∽△EAD

2)解:∵BECD,ABCD

BEAB

∴∠ABE90°.

∵△ABF∽△EAD,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點和點,與軸交于點.

1)求此拋物線的解析式;

2)若點是直線下方的拋物線上一動點(不點,重合),過點軸的平行線交直線于點,設(shè)點的橫坐標為.

①用含的代數(shù)式表示線段的長;

②連接,,求的面積最大時點的坐標;

3)設(shè)拋物線的對稱軸與交于點,點是拋物線的對稱軸上一點,軸上一點,是否存在這樣的點和點,使得以點、為頂點的四邊形是菱形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在綜合實踐課中,小慧將一張長方形卡紙如圖1所示裁剪開,無縫隙不重疊的拼成如圖2所示的形狀,且成軸對稱圖形.裁剪過程中卡紙的消耗忽略不計,若已知,,.

求(1)線段的差值是___

2的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB5,AD3,動點P滿足SPABS矩形ABCD,則點PA、B兩點距離之和PA+PB的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線AB是頂點為B,與y軸交于點A的拋物線y=﹣x2+4x+2的一部分,曲線BC是雙曲線y=的一部分,由點C開始不斷重復(fù)“A﹣B﹣C”的過程,形成一組波浪線,點P(2018,m)與Q(2025,n)均在該波浪線上,則=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組想測量一棵樹的高度,在陽光下,一名同學(xué)測得一根長為1m的竹竿的影長為0.5m,同時另一名同學(xué)測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上,其中,落在墻壁上的影長為0.8m,落在地面上的影長為4.4m,則樹的高為_______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+cx軸交于A(-1,0),B(30)兩點,與y軸交于點C. D(2,3)在該拋物線上,直線ADy軸相交于點E,點F是直線AD上方的拋物線上的動點.

1)求該拋物線對應(yīng)的二次函數(shù)關(guān)系式;

2)當點F到直線AD距離最大時,求點F的坐標;

3)如圖2,點M是拋物線的頂點,點P的坐標為(0n),點Q是坐標平面內(nèi)一點,以AM,PQ為頂點的四邊形是AM為邊的矩形.①求n的值;②若點T和點Q關(guān)于AM所在直線對稱,求點T的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCADE中,∠BAD=CAE,ABC=ADE

(1)求證:ABC∽△ADE;

(2)判斷ABDACE是否相似?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所在相同條件下做某作物種子發(fā)芽率的實驗,結(jié)果如下表所示:

種子個數(shù)

200

300

500

700

800

900

1000

發(fā)芽種子個數(shù)

187

282

435

624

718

814

901

發(fā)芽種子率

0.935

0.940

0.870

0.891

0.898

0.904

0.901

下面有四個推斷:

①種子個數(shù)是700時,發(fā)芽種子的個數(shù)是624,所以種子發(fā)芽的概率是0.891;

②隨著參加實驗的種子數(shù)量的增加,發(fā)芽種子的頻率在0.9附近擺動,顯示出一定的穩(wěn)定性,可以估計種子發(fā)芽的概率約為0.9(精確到0.1);

③實驗的種子個數(shù)最多的那次實驗得到的發(fā)芽種子的頻率一定是種子發(fā)芽的概率;

④若用頻率估計種子發(fā)芽的概率約為0.9,則可以估計種子中大約有的種子不能發(fā)芽.

其中合理的是______.

查看答案和解析>>

同步練習(xí)冊答案