【題目】近期,小明和小李報(bào)名參加了越野跑比賽,已知兩人同時(shí)出發(fā),以各自的速度勻速跑步前進(jìn),出發(fā)一段時(shí)間后,小明身體不適,停下來休息了1分鐘,再以原速繼續(xù)跑步前進(jìn),當(dāng)小明到達(dá)終點(diǎn)后,立即走路返回去接小李;兩人相遇后,小明立即以原來的速度跑步前往終點(diǎn),1分鐘后到達(dá)終點(diǎn).已知兩人間的距離ym)隨兩人運(yùn)動(dòng)時(shí)間xs)變化如圖.問:當(dāng)小明第一次到達(dá)終點(diǎn)時(shí),小李距終點(diǎn)的距離為_____m

【答案】280m

【解析】

先由x=120時(shí),y=60,利用追及路程等于速度差乘以追及時(shí)間,得出小明和小李的速速大小關(guān)系;再利用x=360時(shí),y=0,得出小明和小李在時(shí)間段120360之間的路程關(guān)系為;小明用s所走的路程加上等于小李s所走的路程,得出小明和小李速度之間的第二個(gè)關(guān)系式,兩者聯(lián)立即可解出小明和小李的速度;再由兩人相遇的時(shí)間求出小李相遇時(shí)走的路程,求出相遇時(shí)距離終點(diǎn)的路程,進(jìn)而得出全程長(zhǎng);由全程得出小明第一次到達(dá)終點(diǎn)的時(shí)間,從而求出此時(shí)小李離終點(diǎn)的距離.

解:設(shè)小明和小李的速度分別為V1m/s、V2m/s,

由圖象可知,當(dāng)x120s時(shí),y60m

120V1V2)=60

V1V2+0.5

∵當(dāng)x360時(shí),y0,且小明身體不適,停下來休息了1分鐘,再以原速繼續(xù)跑步前進(jìn),

60+36012060V1=(360120V2

由①②解得

960秒時(shí)兩人相遇,

此時(shí)小李的路程是2.5×9602400m

距離終點(diǎn)的路程為3×60180m

則全程為2400+1802580m

小明第一次到到終點(diǎn)的時(shí)間:+60920s

此時(shí)小李距離終點(diǎn):2580920×2.5280m

故答案為:280m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃購進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:

商品

進(jìn)價(jià)(元/件)

售價(jià)(元/件)

200

100

若用360元購進(jìn)甲種商品的件數(shù)與用180元購進(jìn)乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?

2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設(shè)銷售完50件甲、乙兩種商品的總利潤(rùn)為元,求之間的函數(shù)關(guān)系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)如圖,AC是O的直徑,OB是O的半徑,PA切O于點(diǎn)A,PB與AC的延長(zhǎng)線交于點(diǎn)M,COB=APB.

(1)求證:PB是O的切線;

(2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)問題:如圖(1),在RtACB中,∠ACB=90°,AC=CB,DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.

[探究發(fā)現(xiàn)]

小聰同學(xué)利用圖形變換,將CAD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到CBH,連接EH,由已知條件易得∠EBH=90°,ECH=ECB+BCH=ECB+ACD=45°.根據(jù)邊角邊,可證CEH ,得EH=ED.

RtHBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關(guān)系是

[實(shí)踐運(yùn)用]

(1)如圖(2),在正方形ABCD中,AEF的頂點(diǎn)E、F分別在BC、CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù);

(2)在(1)條件下,連接BD,分別交AE、AF于點(diǎn)M、N,若BE=2,DF=3,BM=2,運(yùn)用小聰同學(xué)探究的結(jié)論,求正方形的邊長(zhǎng)及MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°.

(1)利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡,不寫作法)

①作AC的垂直平分線,交AB于點(diǎn)O,交AC于點(diǎn)D;

②以O為圓心,OA為半徑作圓,交OD的延長(zhǎng)線于點(diǎn)E.

(2)在(1)所作的圖形中,解答下列問題.

①點(diǎn)B與⊙O的位置關(guān)系是__;(直接寫出答案)

②若DE=2,AC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,直線x軸、y軸分別交于點(diǎn)AC兩點(diǎn),點(diǎn)B的橫坐標(biāo)為2.

圖1 圖2

(1)求A、C兩點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;

(2)點(diǎn)D是直線AC上方拋物線上任意一點(diǎn),P為線段AC上一點(diǎn),且SPCD=2SPAD ,求點(diǎn)P的坐標(biāo);

(3)如圖2,另有一條直線y=-x與直線AC交于點(diǎn)M,N為線段OA上一點(diǎn),∠AMN=∠AOM.點(diǎn)Qx軸負(fù)半軸上一點(diǎn),且點(diǎn)Q到直線MN和直線MO的距離相等,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)G是正方形ABCD對(duì)角線CA的延長(zhǎng)線一點(diǎn),對(duì)角線BDAC交于點(diǎn)O,以線段AG為邊作一個(gè)正方形AEFG,連接EB、GD.

(1)求證:EB=GD;

(2)若AB=5,AG=2,求EB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料

小銘和小雨在學(xué)習(xí)過程中有如下一段對(duì)話

小銘“我知道一般當(dāng)mn時(shí),.可是我見到有這樣一個(gè)神奇的等式

=其中a,b為任意實(shí)數(shù)b≠0).你相信它成立嗎?”

小雨“我可以先給a,b取幾組特殊值驗(yàn)證一下看看.

完成下列任務(wù)

(1)請(qǐng)選擇兩組你喜歡的、合適的a,b的值,分別代入閱讀材料中的等式寫出代入后得到的具體等式并驗(yàn)證它們是否成立在相應(yīng)方框內(nèi)打勾);

當(dāng)a= ,b= 時(shí)等式 □成立;□不成立);

當(dāng)a= b= 時(shí),等式 □成立;□不成立).

(2)對(duì)于任意實(shí)數(shù)abb≠0),通過計(jì)算說明=是否成立

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F

(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;

(2)求證:過點(diǎn)A、F的直線垂直平分線段BC

查看答案和解析>>

同步練習(xí)冊(cè)答案