【題目】在一次數(shù)學(xué)課上,張老師出示了一個題目:“如圖,ABCD的對角線相交于點(diǎn)O,過點(diǎn)O作EF垂直于BD交AB,CD分別于點(diǎn)F,E,連接DF,請根據(jù)上述條件,寫出一個正確結(jié)論”其中四位同學(xué)寫出的結(jié)論如下:
小青:;小何:四邊形DFBE是正方形;
小夏:;小雨:.
這四位同學(xué)寫出的結(jié)論中不正確的是
A. 小青 B. 小何 C. 小夏 D. 小雨
【答案】B
【解析】
利用平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì),一一判斷即可.
∵四邊形ABCD是平行四邊形,
∴OA=OC,CD∥AB,
∴∠ECO=∠FAO,(故小雨的結(jié)論正確),
在△EOC和△FOA中,
∴△EOC≌△FOA,
∴OE=OF(故小青的結(jié)論正確),
∴S△EOC=S△AOF,
∴S四邊形AFED=S△ADC=S平行四邊形ABCD,
∴S四邊形AFED=S四邊形FBCE故小夏的結(jié)論正確,
∵△EOC≌△FOA,
∴EC=AF,∵CD=AB,
∴DE=FB,DE∥FB,
∴四邊形DFBE是平行四邊形,
∵OD=OB,EO⊥DB,
∴ED=EB,
∴四邊形DFBE是菱形,無法判斷是正方形,故小何的結(jié)論錯誤,
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)E,F(xiàn),G分別是等邊三角形ABC三邊AB,BC,CA上的動點(diǎn),且始終保持AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,y關(guān)于x的函數(shù)圖象大致為圖2所示,則等邊三角形ABC的邊長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,P均在⊙O上,且分布在直徑AB的兩側(cè),BE⊥CP于點(diǎn)E.
(1)求證:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊斜邊長30cm的直角三角形木板(Rt△ACB)上截取一個正方形CDEF,點(diǎn)D在邊BC上,點(diǎn)E在斜邊AB上,點(diǎn)F在邊AC上,若AF:AC=1:3,則這塊木板截取正方形CDEF后,剩余部分的面積為( )
A. 100cm2B. 150cm2C. 170cm2D. 200cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年中國北京世界園藝博覽會(以下簡稱“世園會”)于4月29日至10月7日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會”、.“愛我家,愛園藝”、.“園藝小清新之旅”和.“快速車覽之旅”.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.
(1)李欣選擇線路.“園藝小清新之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是邊長為2的正方形ABCD的中心.函數(shù)y=(x﹣h)2的圖象與正方形ABCD有公共點(diǎn),則h的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點(diǎn)在止方形的對角線上,,垂足為點(diǎn),,垂足為.
(1)求證:四邊形是正方形并直接寫出的值.
(2)將正方形繞點(diǎn)順時針方向旋轉(zhuǎn),如圖(2)所小,試探究與之間的數(shù)量關(guān)系,并說明理由.
(3)正方形在旋轉(zhuǎn)過程中,當(dāng),,,三點(diǎn)在一條直線上時,如圖(3)所示,延長交于點(diǎn).若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與邊BC交于點(diǎn)D,與邊AC交于點(diǎn)E,連接AD,且AD平分∠BAC.
(1)試判斷BC與⊙O的位置關(guān)系,并說明理由;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com