【題目】在五邊形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD邊的中點(diǎn),點(diǎn)P由點(diǎn)A出發(fā),按A→B→C→M的順序運(yùn)動(dòng).設(shè)點(diǎn)P經(jīng)過的路程x為自變量,△APM的面積為y,則函數(shù)y的大致圖象是( )
A.
B.
C.
D.
【答案】A
【解析】解:由已知可得,
當(dāng)點(diǎn)P從A到B的過程中,y= (0≤x≤1);
當(dāng)點(diǎn)P從B到C的過程中,y= = = (1≤x≤2);
點(diǎn)P從C到M的過程中,y= (2≤x≤ ).
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的圖象的相關(guān)知識(shí)可以得到問題的答案,需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,E、D分別是AC、BC的中點(diǎn),AD、BE交于點(diǎn)O , 則S△DOE:S△AOB=( 。
A.1:2
B.2:3
C.1:3
D.1:4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組管道如圖1所示,其中四邊形ABCD是矩形,O是AC的中點(diǎn),管道由AB,BC,CD,DA,OA,OB,OC,OD組成,在BC的中點(diǎn)M 處放置了一臺(tái)定位儀器.一個(gè)機(jī)器人在管道內(nèi)勻速行進(jìn),對(duì)管道進(jìn)行檢測(cè).設(shè)機(jī)器人行進(jìn)的時(shí)間為x,機(jī)器人與定位儀器之間的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則機(jī)器人的行進(jìn)路線可能為( )
A.A→O→D
B.B→O→D
C.A→B→O
D.A→D→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),P是第一象限內(nèi)任意一點(diǎn),連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點(diǎn)P 的“雙角坐標(biāo)”.例如,點(diǎn)(1,1)的“雙角坐標(biāo)”為(45°,90°).
(1)點(diǎn)( , )的“雙角坐標(biāo)”為;
(2)若點(diǎn)P到x軸的距離為 ,則m+n的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)y=x+ 的圖象與性質(zhì)
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個(gè)函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是
(3)對(duì)于函數(shù)y=x+ ,求當(dāng)x>0時(shí),y的取值范圍.
請(qǐng)將下面求解此問題的過程補(bǔ)充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函數(shù)y= ,則y的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y1=mx2+(m﹣3)x﹣3(m>0)與x軸交于A、B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,OB=OC.
(1)求這條拋物線的表達(dá)式;
(2)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,若點(diǎn)C在直線y2=﹣3x+t上,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)P(﹣1,﹣1).
(1)求此函數(shù)的表達(dá)式;
(2)畫出此函數(shù)在第一象限內(nèi)的圖象.
(3)根據(jù)函數(shù)圖象寫出此函數(shù)的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中: ①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當(dāng)x>1時(shí),y隨著x的增大而增大.
正確的說法有 . (請(qǐng)寫出所有正確的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com