【題目】如圖:兩座建筑物AB、CD相距60米,從點(diǎn)A測(cè)得D點(diǎn)的俯角為30°,從A點(diǎn)下降10米到E點(diǎn),在E點(diǎn)測(cè)得C點(diǎn)的俯角為43°求兩座建筑物的高度.(精確到0.1)(參考數(shù)據(jù):≈1.73,cos43°≈0.73,sin43°≈0.68,tan43°≈0.93)
【答案】AB高為65.8米,CD高為31.2米.
【解析】
過點(diǎn)D作DM⊥AB于M則DM=BC=60;在Rt△BCE中求出BE,在Rt△ADM中求出AM,即可解決問題.
解:過點(diǎn)D作DM⊥AB于M則DM=BC=60;
則四邊形BCDM是矩形,
∴DM=BC=60,CD=BM,
在Rt△BEC中 tam43°=
∴BE=BCtan 43°≈60×0.93=55.8米,
∴AB=AE+BE=10+55.8=65.8米,
在Rt△AMD中 tan30°=,
∴AM=DMtan 30°=60×=≈34.6米
∴CD=AB﹣AM=65.8﹣34.6=31.2米,
答:AB高為65.8米,CD高為31.2米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種油菜籽在相同條件下的發(fā)芽試驗(yàn)結(jié)果如下表:
每批粒數(shù)n | 5 | 10 | 70 | 130 | 310 | 700 | 1500 | 2000 | 3000 |
發(fā)芽粒數(shù)m | 4 | 9 | 60 | 116 | 282 | 639 | 1339 | 1806 | 2715 |
請(qǐng)用頻率估計(jì)概率的方法來估計(jì)這批油菜籽在相同條件下的發(fā)芽概率是_______(精確到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形 OA1B1C1,依此方式,繞點(diǎn)O連續(xù)旋轉(zhuǎn)2019次得到正方形OA2019B2019C2019,如果點(diǎn)A的坐標(biāo)為(1,0),那么點(diǎn)B2019的坐標(biāo)為( )
A.B.C.(1,1)D.(﹣1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=18,AD=12,∠ABC的平分線交CD于點(diǎn)F,交AD的延長(zhǎng)線于點(diǎn)E,CG⊥BE,垂足為G,若EF=4,則線段CG的長(zhǎng)為( 。
A.2B.6C.4D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+與x軸交于點(diǎn)A(﹣5,0),B(1,0),頂點(diǎn)為D,與y軸交于點(diǎn)C.
(1)求拋物線的表達(dá)式及D點(diǎn)坐標(biāo);
(2)在直線AC上方的拋物線上是否存在點(diǎn)E,使得∠ECA=2∠CAB,如果存在這樣的點(diǎn)E,求出△ACE面積,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C(3,0),B(2,2),以OC,BC為邊作平行四邊形OABC,則經(jīng)過點(diǎn)A的反比例函數(shù)的解析式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費(fèi) 用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費(fèi)用,提高車票價(jià)格;建議(Ⅱ)不改變車票價(jià)格,減少支出費(fèi)用.下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則下列說法正確的是:
A. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)
C. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的頂點(diǎn)B在拋物線y=x2的第一象限部分,若B點(diǎn)的橫坐標(biāo)與縱坐標(biāo)之和等于6,則正方形OABC的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com