【題目】如圖:
(1)P是等腰三角形ABC底邊BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作BC的垂線,交AB于點(diǎn)Q,交CA的延長(zhǎng)線于點(diǎn)R.請(qǐng)觀察AR與AQ,它們有何關(guān)系?并證明你的猜想.
(2)如果點(diǎn)P沿著底邊BC所在的直線,按由C向B的方向運(yùn)動(dòng)到CB的延長(zhǎng)線上時(shí),(1)中所得的結(jié)論還成立嗎?請(qǐng)你在圖(2)中完成圖形,并給予證明.
【答案】(1)AR=AQ;見(jiàn)解析;(2)見(jiàn)解析
【解析】
試題分析:(1)由已知條件,根據(jù)等腰三角形兩底角相等及三角形兩直角互余的性質(zhì)不難推出∠PRC與∠AQR的關(guān)系;
(2)由已知條件,根據(jù)等腰三角形兩底角相等及三角形兩直角互余的性質(zhì)不難推出∠BQP與∠PRC的關(guān)系.
解:(1)AR=AQ,理由如下:
∵AB=AC,
∴∠B=∠C.
∵RP⊥BC,
∴∠B+∠BQP=∠C+∠PRC=90°,
∴∠BQP=∠PRC.
∵∠BQP=∠AQR,
∴∠PRC=∠AQR,
∴AR=AQ;
(2)猜想仍然成立.證明如下:
∵AB=AC,
∴∠ABC=∠C.
∵∠ABC=∠PBQ,
∴∠PBQ=∠C,
∵RP⊥BC,
∴∠PBQ+∠BQP=∠C+∠PRC=90°,
∴∠BQP=∠PRC,
∴AR=AQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題。
(1)計(jì)算:﹣20+4﹣1×( )﹣2;
(2)計(jì)算:(﹣2a2b)3÷(﹣ab)( a2b3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】京東某自營(yíng)店去年10月份銷量為x萬(wàn)元,今年比去年減少10%,則今年產(chǎn)值是( )
A. (1+10%)x萬(wàn)元 B. (1-10%x)萬(wàn)元 C. (1-10%)x萬(wàn)元 D. 10%x萬(wàn)元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)定義運(yùn)算“☆”,對(duì)于任意實(shí)數(shù)a、b,都有a☆b=a2﹣3a+b,若x☆2=6,則實(shí)數(shù)x的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在△ABC中,∠ABC、∠ACB的平分線相交于F,過(guò)F作DE∥BC,分別交AB、AC于點(diǎn)D、E.判斷DE=DB+EC是否成立?為什么?
(2)如圖,若點(diǎn)F是∠ABC的平分線和外角∠ACG的平分線的交點(diǎn),其他條件不變,請(qǐng)猜想線段DE、DB、EC之間有何數(shù)量關(guān)系?
證明你的猜想。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,D為邊BA延長(zhǎng)線上一點(diǎn),連接CD,以CD為一邊作等邊△CDE,連接AE.
(1)求證:△CBD≌△CAE;
(2)求證:AE∥BC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com